

Appendix :

- PEOORDS CENTER REGION 5

BASELINE ECOLOGICAL RISK ASSESSMENT for the Former American Zinc Plant Site Fairmont, City, Illinois

Prepared by
Terry Bosko
M.T. Bosko and Associates, LLC.

On behalf of **ENTACT & Associates, LLC**

August 2008

Baseline Ecological Risk Assessment Old American Zinc Plant Site Fairmont City, Illinois

TABLE OF CONTENTS

Section	1		<u>Page</u>
EXEC	UTIVE SUM	MARY	
1.0	INTROD	UCTION	1
1.1		CH	
1.2	REPORT (ORGANIZATION	3
2.0	SITE CH	ARACTERISTICS	4
2.1		L SETTING	
2.2		ROLOGY AND DRAINAGE	
	2.2.1 Facilit	y Area Ditches	5
		Creek	
	2.2.3 Schoe	nberger Creek	6
		ahokia Watershed	
2.3	ECOLOGI	CAL SETTING	8
	2.3.1 Facilit	y Area Ditches	8
		Creek	
	2.3.3 Old C	ahokia Watershed	
	2.3.3.1		
	2.3.3.2	Rose Creek Outfall	12
		nberger Creek	
3.0		M FORMULATION	
3.1	COPEC FA	ATE AND TRANSPORT AND ECOTOXICITY	13
3.2	COMPLET	TE EXPOSURE PATHWAYS AND CONCEPTUAL SI	
	MODEL	•••••••••••••••••••••••••••••••••••••••	15
3.3	ASSESSM	ENT AND MEASUREMENT ENDPOINTS	16
4.0	ECOLOG	SICAL FIELD INVESTIGATIONS	17
4.1	SEDIMEN	T AND SURFACE WATER CHEMISTRY	17
4.2	WHOLE S	EDIMENT BIOASSAYS	18
	4.2.1 Bioass	ay Sediment Sample Collection	18
		ay Laboratory Methods	
4.3		ESIDUE STUDIES	
	4.3.1 Macro	invertebrate Tissue	19
	4.3.2 Plant 7	Fissue	20
4.4	COMMUN	ITY STUDIES	21
	4.4.1 Macro	invertebrate Community	21
	4.4.2 Wetland	Plant Community	22
5.0	CHARAC	TERIZATION OF EXPOSURE AND EFFE	CTS24
5.1	-	TERIZATION OF EXPOSURE	
	5.1.1 Sedim	ent and Surface Water Chemistry	24

,	5.1.2 Bioas	says	28
	5.1.3 Tissu	e Residue Studies	29
	5.1.3.1		
	5.1.4 Com	munity Studies	30
	5.1.4.1	Macroinvertebrates	
	5.1.4.2	Wetland Plant Community	31
5.2		TERIZATION OF EFFECTS	
;	5.2.1 Sedin	nent and Surface Water Chemistry	32
	5.2.2 Bioas	says	34
	5.2.3 Tissu	e Studies	35
	5.2.4 Comr	nunity Studies	36
	5.2.4.1		
		Wetland Plant Community Study	
6.0	RISK CH	IARACTERIZATION	40
6.1	RISK EST	TIMATION	40
(6.1.1 Sedime	nt and Surface Water Chemistry	40
(6.1.2 Bioas	says	44
(6.1.3 Tissu	e Analysis	45
(6.1.4 Comr	nunity Studies	47
	6.1.4.1	Macroinvertebrates	
	6.1.4.2	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
6.2		AINTY ANALYSIS	
6.3	RISK DES	SCRIPTION	52
7.0	REFERE	NCES	57

TABLES

Table 3-1	Assessment and Measurement Endpoints		
Table 4-1	Summary of Surface Water and Sediment Samples Collected for Chemical Analyses		
Table 4-2	Summary of YSI Readings		
Table 4-3	Summary of Bioassay Sediment Sample Locations		
Table 4-4	hysical Appearance of Sediment Collected for Bioassays		
Table 4-5	Benthic Tissue Sample Composition		
Table 4-6	Summary of Aquatic Macro-Invertebrate Community Sampling Locations		
Table 5-1	Concentrations of 8 RCRA Metals, Copper, Zinc and Detected Pesticide Compounds in Sediment Samples Compared to Ecological Screening Levels		
Table 5-2	Concentrations of Total and Dissolved Metals and Detected Organic Compounds in Surface Water Samples Compared to Ecological Screening Levels		
Table 5-3	Physical Appearance of Sediments and Bioassay Results		
Table 5-4	Summary of Analyses of Benthic Macro-Invertebrate Tissue Samples		
Table 5-5	Summary of Analyses of Plant Tissue Samples		
Table 5-6	Benthic Macroinvertebrate Community Analysis		
Table 5-7	Benthic Macroinvertebrate Community Indices		
Table 5-8	Summary of Plant Community Study		
Table 6-1	Summary of PEC-Quotients for Metals in Sediment Samples		
Table 6-2a	Concentrations of Dissolved Metals in Surface Water Samples Compared to IEPA Water Quality Criteria		
Table 6-2b	Calculation of Hardness-Dependent Aquatic Life Standards		
Table 6-3	Benthic Macro-Invertebrate Tissue Samples Compared to Tissue Residue Effect Levels		
Table 6-4	Lines of Evidence for Assessing Impacts on Aquatic Ecosystems		
Table 6-5	Maximum and Mean Hazard Quotients (HQ) for Estimated Benthic Invertebrate Tissue Concentrations		

FIGURES

Figure 1	Facility Location	
0	•	
_	Surface Water Features shown on the 2004 Ortho-Rectified Aerial Photograph	
Figure 3	Ecological Sample Location Map	
Figure 4	Ecological Conceptual Site Model	
Figure 5	Regression Analyses of Benthic Tissue and Sediment Concentrations	

Old American Zinc Plant Site Baseline Ecological Risk Assessment Revision: 0 August 2008

ATTACHMENTS

Attachment A Site Photographs

Attachment B Bioassay Laboratory Results

Attachment C Benthic Community Study

Attachment D Vegetation Community Study

Attachment E ERED Database

Attachment F Calculation of PEC Quotients and Estimated Tissue Concentrations

1.0 INTRODUCTION

The objective of the baseline ecological risk assessment (BERA) is to determine whether chemicals associated with the Old American Zinc Plant Site (Site) in Fairmont City, Illinois found in wetland soils, sediments and/or surface water pose a current or potential future risk to populations of aquatic receptors, including macroinvertebrates and plants. An ecological survey (described in Subsection 1.3) found no state or federally listed Threatened and Endangered (T&E) plant or animal species or suitable habitat for these species on or surrounding the Site. In accordance with the Administrative Order of Consent (AOC), because no terrestrial T&E species were identified the BERA only has to address the aquatic ecosystem that may potentially have been affected by smelter-related contaminants.

To meet this objective, the BERA:

- Evaluates heavy metal levels in sediment, surface water, and macroinvertebrate and wetland plant tissue;
- Assesses the potential for adverse impact to ecological receptors, focusing on exposures to aquatic invertebrate and wetland plant communities; and,
- Develops conclusions and recommendations based on the findings of the BERA.

The results of the BERA will be utilized in the Feasibility Study (FS) to propose risk-based standards applicable to the Site and to define the appropriate response alternatives, if any.

1.1 APPROACH

The methodology used to assess the potential ecological risks at the Site draws upon guidance set forth in the following documents:

- Framework for Ecological Risk Assessment (EPA, 1992a). EPA/630/R-92/001.
- Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments - Interim Final (EPA, 1997). EPA 540-R-97-006.
- Guidelines for Ecological Risk Assessment (EPA, 1998). EPA/630/R-95/002F.
- Ecological Risk Assessment and Risk Management Principles for Superfund Sites (EPA, 1999). OSWER Directive 9285.7-28P.
- Superfund Ecological Risk Assessment 8-step Overview (EPA, 2005). Last updated on Monday, January 3, 2005.
 - URL: http://www.epa.gov/region5superfund/ecology/html/8stepera.html

 Sediment Classification Methods Compendium (EPA, 1992b). EPA 823-R-92-006.

The United States Environmental Protection Agency's (EPA's) *Framework* document (1992a) defines an ecological risk assessment (ERA) as a process that evaluates the likelihood that adverse ecological effects are occurring or may occur as a result of exposure to one or more stressors. EPA (1997) has developed an eight-step ERA process for Superfund that is based on this ecological risk assessment framework. The steps are:

- Step 1: Screening Level Problem Formulation and Ecological Effects Evaluation
- Step 2: Screening Level Preliminary Exposure Estimate and Risk Calculation
- Step 3: Baseline Risk Assessment Problem Formulation
- Step 4: Study Design and Data Quality Objectives
- Step 5: Field Verification of Sampling Design
- Step 6: Site Investigation and Analysis of Exposure and Effects
- Step 7: Risk Characterization
- Step 8: Risk Management

The first two steps in the assessment process are streamlined versions of the complete framework process and are intended to allow a rapid determination that a site poses no or negligible risks, or to identify which chemicals and which exposure pathways require further evaluation. A screening level ecological risk assessment (SLERA) was completed for this Site during the development of the Support Sampling Plan (SSP) for the Site (ENTACT, 2006). This SLERA identified the need to conduct further assessment of potential risks posed by heavy metals to specific aquatic receptors. Specifically, historic data revealed the presence of sediments at the Site that contained concentrations of heavy metals in excess of sediment-quality benchmarks. Macro-invertebrate fauna and plants inhabiting the ditches, streams, and wetlands that receive runoff from the area of the former smelter facilities (Facility Area) may, therefore, become exposed to the heavy metals present in these sediments at concentrations that could result in potential ecological risks. Therefore, the BERA prepared for the Site addresses potential risks to aquatic plants and aquatic macro-invertebrates resulting from the presence of heavy metals within surface waters and sediments.

Steps 3 through 7 in the framework are a more detailed version of the ecological risk assessment framework, and these are the steps that were followed for preparing the BERA for the Site. The following subsections present the steps performed for this BERA, following EPA Region 5 guidance (EPA, 2005).

1.2 REPORT ORGANIZATION

This report consists of the following sections:

- Section 1: Introduction This section presents an introduction to the Site, objectives, approach, and the organization of the report.
- Section 2: Site Characteristics This section presents a description of the Site and describes Site-specific field investigations conducted to support the BERA.
- Section 3: Problem Formulation This section presents the first four required elements of the BERA: the chemical of potential ecological concern (COPEC) screening analysis, an exposure pathway analysis, a conceptual exposure model, and a COC fate and transport analysis. Assessment and measurement endpoints are also selected.
- Section 4: Ecological Investigations This section presents a description of the field studies performed to support the BERA, which included sediment and surface water sampling, laboratory bioassays, tissue sampling, and community studies.
- Section 5: Characterization of Exposure and Ecological Effects This section presents the characterization of exposure, which identifies the magnitude and frequency at which target receptors may potentially be exposed to COPECs that have migrated or that may potentially migrate via complete exposure pathways to the ecological habitat at the Site. This section also presents information on the toxicity of the COPECs to ecological species, including bioassays/toxicity assessment and bioaccumulation studies.
- Section 6: Risk Characterization This section presents the risk estimation and risk description which integrates the information from the problem formulation and the exposure and ecological effects characterizations to estimate the nature and extent of potential ecological risk. This section also summarizes those factors that significantly influence estimates of potential risk, evaluates their range of variability, and assesses the contribution of these factors to the under- or over-estimation of potential risk.
- Section 7: References- This section presents the citations of the literature referenced in the BERA.

All tables and figures presented in this report are located at the end of each respective section.

2.0 SITE CHARACTERISTICS

A physical and biological description of the Site and information on the areas on or adjacent to the Site that contain ecological receptors and habitat are described in this section.

2.1 PHYSICAL SETTING

The former smelting operations at the Site were conducted on the 132-acre Facility Area located within the southeast quarter of Section 4, Township 2 North, Range 9 West, St. Clair County, Illinois,. The Facility Area location and surrounding area topography are illustrated in Figure 1. The Facility Area is currently inactive, and surrounded by a chain-linked perimeter fence with locked entrance gates along the eastern and southern boundaries.

The Facility Area is bordered by Kingshighway to the east, 45th Street to the west, Maryland Avenue to the north, the Cargill Facility (formerly Swift Agricultural Chemical Corp.) to the southeast, and CSX Intermodal and the Penn Central and Baltimore/Ohio railroad corridor to the south, as illustrated in Figure 1. Residential properties lie to the immediate north and northeast of the Facility Area, and commercial and industrial properties lie to the immediate east, south and west. Collinsville Road, a four-lane highway, lies approximately 0.12 miles north of the Facility Area and to the immediate south of a large wetland complex known as the Old Cahokia Watershed.

As the focus of the BERA is limited to the aquatic ecosystem that may have been affected by smelter-related chemicals, this discussion regarding Site setting is limited to the aquatic features on and downgradient of the Facility Area.

2.2 SITE HYDROLOGY AND DRAINAGE

The surface water drainage on and downgradient of the Facility Area is shown on Figure 2. Surface water drainage over the majority of the Facility Area flows in a southwesterly direction to Rose Creek via a series of ephemeral ditches. Rose Creek, another ephemeral drainage flows in a westerly direction from the Facility Area, discharging to the Old Cahokia Watershed at a point approximately 3/4 mile west of the Facility Area. The northwestern portion of the Facility Area is drained by a ditch along the western boundary of the Facility Area, which carries and surface water runoff from this area of the Facility Area northward directly to the Old Cahokia Watershed at a point approximately 1/4 mile north of the Facility Area.

The Old Cahokia Watershed included in the investigation area encompasses approximately more than 1,500 acres to the north and west of the Facility Area across Collinsville Road, as illustrated in Figure 2. The watershed is drained in part by a remnant section of Cahokia Creek, and an engineered drainageway (herein referenced as

the Engineered Drainage Ditch), which channels water from the drainage of the Milam Landfill and Interstate 55 to Schoenberger Creek, the watershed outlet point, located approximately 1,500 feet west of the Rose Creek Outfall location. This engineered drainageway hydraulically connects Rose Creek to Schoenberger Creek.

Section 1.1.1.3 of the Remedial Investigation (RI) report presents a detailed description of the drainage features on and downgradient of the Facility Area. These descriptions are reiterated herein for the convenience of reference.

2.2.1 Facility Area Ditches

The Facility Area is drained by a set of four drainage ditches; two located in the eastern portion of the Facility Area, designated as East Ditch #1 and East Ditch #2, and two located in the western portion of the Facility Area, designated as West Ditch #1 and West Ditch #2. The locations of these drainage ditches are illustrated in Figure 2. These ditches are shallow and ephemeral; they lie above the water table, receive no base flow, and only flow in direct response to a precipitation event. During periods of no precipitation, the ditches consist of isolated pools of stagnant water separated by segments of dry ditch. During the summer these pools get very warm and anaerobic, and are prone to temperature extremes and depleted oxygen levels (refer to Subsection 4.1).

East Ditch #1 begins at the eastern edge of the Facility Area east of the XTRA buildings, and continues approximately 2,200 feet in a southwesterly direction across the far eastern portion of the Facility Area until it flows into Rose Creek near the southeastern corner of the Facility Area. This ditch is bermed with spoil and/or slag, and consisted of pooled, stagnant water throughout its entire length during all the sampling events. East Ditch #2 begins at Kingshighway north of the Cargill Property and extends west for approximately 800 feet to its confluence with East Ditch #1, approximately 600 feet upstream of Rose Creek (Figure 2). East Ditch #2 is very shallow and heavily vegetated, and during drier periods holds no standing water. There are no distinct bordering spoil banks along this ditch

The western and northwestern portions of the Facility Area are drained by a West Ditch #1, which runs along the western border of the Facility Area and thence along Maryland Avenue, where it is channeled through a culvert beneath Collinsville Road, discharging to the Old Cahokia Watershed at a point, referenced as the West Ditch Outfall, approximately ¼ mile north of the Facility Area (Figure 2). West Ditch #1 consists of a narrow, shallow swale, and does not possess any distinct bordering spoil banks. The southern portion of this ditch passes through a wooded area and discharges to Rose Creek at the southwestern corner of the Facility. The remainder of the ditch discharges to the West Ditch Outfall in the Old Cahokia Watershed. West Ditch #2 is located in the southwestern corner of the Facility Area and is a narrow, very shallow, 800-foot long, erosional swale that discharges to Rose Creek via a culvert outfall at the extreme southwestern corner of the Facility Area.

The sediments in the dry sections of the Facility ditches generally consist of silty clays with varying amounts of organic matter and in some instances, most notably the southern portion of East Ditch #1 and the central portions of West Ditch #1, visible pieces of slag. Sediments in the northern portion of East Ditch #1 possessed a large amount of dead and decaying plant matter.

2.2.2 Rose Creek

Rose Creek is a shallow, ephemeral stream which flows in a westerly direction along the south edge of the Facility Area. Prior to entering the Site, Rose Creek flows along the southern boundary of the General Chemical facility, crossing beneath Kingshighway and along the Cargill facility's southern boundary (Figure 2). Rose Creek flows westerly along the Facility Area's southern boundary and then continues in a general westerly direction along the northern side of the CSX railroad corridor. It is diverted via a culvert beneath Collinsville Road where the creek discharges to the Old Cahokia Watershed at a point, referenced as the Rose Creek Outfall, approximately ¾ mile west of the Facility Area's western boundary (Figure 2).

Like the drainage ditches, Rose Creek is ephemeral and only flows in direct response to precipitation events. During periods of no precipitation, Rose Creek consists of isolated pools of stagnant water separated by segments of dry creek bed. During the summer these pools get very warm and anaerobic.

Sediments in Rose Creek consist largely of silty clays with some organic matter. The stretch of creek along the southwest corner of the Facility Area contained a surficial layer of fine organic silty muck and distinct pieces of slag.

2.2.3 Schoenberger Creek

Schoenberger Creek is located south of the Facility Area (Figure 2). The creek flows in a westerly direction before it is diverted north through a culvert under Collinsville Road into the Old Cahokia Watershed. The Creek continues north through the watershed for approximately 1,400 feet and then trends westerly. The Creek is channelized at this point, and hydraulically isolated from the wetlands of the Watershed via border spoil banks. The Old Cahokia Watershed discharges into Schoenberger Creek via two culverts at points just north of Collinsville Road. Schoenberger Creek continues to flow west for approximately 0.6 miles where it converges with a tributary of the Cahokia Canal. According to a 1998 United States Geological Survey (USGS) aerial photograph, the tributary flows north to Cahokia Canal, which discharges into the Mississippi River approximately 3 miles downstream of the point where the Old Cahokia Watershed discharges into Schoenberger Creek.

2.2.4 Old Cahokia Watershed

The Old Cahokia Watershed consists of a complex of wetlands and stagnant, standing water, man-made ponds, and isolated upland areas located between Collinsville Road to the south, Illinois Highway 111 (Kingshighway) to the east, Interstate 55/70 (I-55/70) to the north, and Illinois Highway 203 to the west. Two creeks traverse the east and western portion of the Watershed, Old Cahokia Creek and Schoenberger Creek. The two creek channels are separated from each other by distance (approximately 1,000 feet) and a levee, which was constructed between 1907 and 1915 and later improved by the U.S. Army Corp of Engineers under the Flood Control Act of 1936. The two creek channels and the connecting engineered drainageway are illustrated in Figure 2.

Prior to reaching the Old Cahokia Watershed, Schoenberger Creek is hydraulically separated from the Facility Area both topographically and through intervening manmade barriers as illustrated in Figure 2. These barriers include an expansive rail corridor, a natural bluff along the north side of Washington Park (immediately south of the rail corridor), numerous streets and residential properties, as evident in Figure 2.

Historically, much of the Watershed was drained and used for agricultural purposes. Old Cahokia Creek previously drained the Watershed before flowing south through East St. Louis and discharging to the Mississippi River at a point approximately 3 miles southsouthwest of the Facility Area (Fenneman, 1910). Development, construction of I-55/70 in the early 1960s, and the expansion of the Milam Landfill have significantly altered the natural drainage in this area. The Old Cahokia Creek channel is clearly identified in the 1968 aerial photograph on both sides of I-55/70. The 2004 aerial photograph (Figure 2) shows an expanded landfill area and a series of ponds on the north side of I- 55/70, with Old Cahokia Creek truncated on the north side of I-55/70. According to an Illinois State Geological Survey (ISGS) study, the creek drainage now flows west through a series of ponds along the northern side of I-55/70 (ISGS, 2003). The drainage from this area then flows back through a second culvert under I-55/70 and into the Engineered Drainage Ditch. The Engineered Drainage Ditch located in the western portion of the Watershed is evident in the earliest aerial photographs of the area (1950), and presumably served to channel drainage from these agricultural fields. This structure still serves to drain the western portion of the Watershed.

An 80-acre golf course was located north of Collinsville Road in the south-central portion of the Watershed. The golf course, constructed in 1949, used earthen berms on the western and eastern portions of the parcel to prevent inundation of the area. The golf course appears in historical aerial photographs from 1950 through 1993. Sometime after 1993, the golf course was abandoned.

During the period between 1978 and 1988, much of the agricultural and fallow lands in the Watershed were inundated. In 2003, the ISGS reported on the results of a study to determine if the former golf course could be converted into a potential wetland compensation area. The ISGS recommended removing the eastern berm to restore the golf course to wetland conditions (ISGS, 2003). The former golf course area and the slope of the terrace along the watershed's southern boundary are the only areas within the Watershed which are not mapped as either a National Wetland Inventory (NWI) wetland or a Permanent or Semi-permanent Inundation Area. However, recent direct observation indicates that the former golf course area contains wetland habitats.

Information obtained by ENTACT from Illinois Environmental Protection Agency (IEPA) files indicated that the illegal dumping of drums of industrial wastes occurred in the area south of Old Cahokia Creek and northeast of the golf course in the early 1970s. A removal action was conducted in August 1984 that entailed the removal of these drums and some visibly impacted surface soils.

Surface water runoff from the Facility Area enters the Watershed at two outfall points, the West Ditch Outfall and the Rose Creek Outfall. These are described further in Subsections 2.3.6 and 2.3.7, respectively. The West Ditch outfall is located in the eastern portion of the Old Cahokia Watershed (Figure 2). The outfall drains to a small wet meadow and marshland area located north of Collinsville Road. The Rose Creek Outfall is located in the western portion of the Old Cahokia Watershed (Figure 2). The outfall drains to a scour channel that drains to a wetlands area located south of the historic location of the Engineered Drainage Ditch.

Standing water within the wetlands and open water habitats is largely stagnant, with very little if any flow. The standing water is shallow, generally two feet or less in depth. Sediments within these habitats generally consisted of highly organic, anaerobic/septic mucks underlain by very dense, plastic grey clays.

2.3 ECOLOGICAL SETTING

The following subsections describe the ecological setting of the ephemeral drainage features, wetlands and water bodies at the Site. Photographs of these areas are presented in Attachment A.

2.3.1 Facility Area Ditches

The vegetation within and bordering the Facility Area ditches consist of disturbance tolerant or ruderal (weedy and adventive) species. Sections of East Ditch #1 retain ponded water throughout all or much of the year, and support ruderal populations of aquatic vegetation, and macro-invertebrates. The remaining three Facility Area drainage ditches do not retain any standing water during the drier parts of the year, and do not support any such aquatic populations.

The northern stretch of East Ditch #1, extending from its northern terminus near the east side of the Facility southward to the confluence of East Ditch #2 (Figure 2), supports floating, emergent, and submerged aquatic vascular vegetation including grasses, duckweed (*Lemna*), arrowhead (*Sagittarius*), pondweed (*Potamogeton*), water purslane

(Ludwigia), and filamentous algae within the bed of the ditch. The water column is shallow, typically less than one foot in depth. The bordering spoil banks are pronounced and consist of soil and slag-like granular fill, and are generally well vegetated with forbs and weeds, and occasional shrubs. The southern stretch of East Ditch #1, extending from this confluence south to Rose Creek, also holds stagnant water; however, the presence of vascular aquatic vegetation is noticeably reduced, while the presence of submerged algal mat increases. The areas bordering this section of the ditch are covered with slag and slag-like granular fill, and sparse growth of ruderal grasses and forbs.

East Ditch #2 is a shallow ephemeral swale which is heavily vegetated with grasses, forbs and woody shrub, sapling, and tree growth. This ditch holds no standing water during drier periods of the year.

The southern section of West Ditch #1, extending from the south side of the Facility Area approximately 700 feet to the north, consists of a dry ephemeral swale within a heavily wooded area of mature trees. The northern section, extending from this wooded area to the northwest corner of the Facility Area, is also a shallow swale overgrown with grass, and forbs. Some isolated, very small pools of stagnant water, and isolated pockets of cattails (*Typha*) and common reed (*Fragmities*) exist within the bed of the central section of West Ditch #1. The areas bordering the ditch on the Facility Area possess a large amount of demolition debris and exposed slag and slag-like granular fill. They are sparsely vegetated if at all, with grasses and forbs, and some isolated sapling/small tree growth. That section of West Ditch #1 extending off of the Facility Area north to Collinsville Road consists of an open ephemeral grassed swale, or is diverted through a sub-grade storm sewer.

West Ditch #2 consists of a dry ephemeral swale within an area dominated by small ruderal trees and forbs, and isolated colonies of common reed and cattails. Some isolated ponding may persist near towards the northern terminus of the ditch during parts of the year.

2.3.2 Rose Creek

Upstream of the Facility Area, Rose Creek consists of a shallow swale sparsely vegetated with grasses, forbs and some woody shrub, sapling, and small tree growth. The section of Rose Creek bordering the southeast and south-central portions Facility Area typically holds standing water even during the direr portions of the year, with this pooled water being contiguous with pooled water present in the southern portion of East Ditch #1. There is very little vascular aquatic vegetation present in this pool, the majority of the vegetation present consists of submerged algal mats. The Creek is bordered by a spoil bank of slag, slag-like granular fill and soil which are sparsely vegetated with ruderal forbs. Progressing westward, the spoil banks begin to level out to the surrounding grade, and the banks of the ditch quickly become heavily vegetated with forbs, shrubs and trees. These trees eventually form a canopy over the ditch. The depth of water steadily

decreases, until standing water is present only within intermittent pools along the western end of the south side of the Facility Area.

Downstream of the Facility Area, Rose Creek consists largely of a low scour channel with some isolated pooling of water. The creek is bordered by a narrow band of small ruderal trees which grade to mature deciduous woods occupying a distinct ravine near Collinsville Road. Some sections of the Creek possess a large amount of collected debris (dead fall and/or trash).

2.3.3 Old Cahokia Watershed

The Old Cahokia Watershed consists of a complex of wetlands and stagnant, standing water, man-made ponds/borrow pits, and isolated upland areas. The open water and wetlands are largely of recent origin, having been created within the last 30 or so years from formerly drained agricultural lands, wooded areas, and a golf course. The floral communities present in these wetland and aquatic habitats contain a large percentage of ruderal/adventive species.

The Watershed possesses three principal drainage features; remnant portions of Cahokia Creek, the Engineered Drainage Ditch, and a small section of Schoenberger Creek (Figure 2). Remnant sections of Cahokia Creek, a perennial stream, exist in the northeast portion of the Watershed Area. This Creek drains the eastern portion of the Watershed to the north via a culvert underlying Interstate 70/55. The Engineered Drainage Ditch is an historic, man-made drainage channel which likely served to drain agricultural lands in the western portion of the Watershed. Schoenberger Creek is a perennial stream that receives drainage from wetlands in the far southwestern portion of the Watershed.

A large portion Watershed consists of various wetland habitats, as well as some associated open water habitat. The area located between Cahokia Creek and Collinsville Road in the eastern portion of the Watershed contains a large open water habitat bordered by cattail marsh, particularly to the south, and buttonbush (*Cephalanthus occidentalis*) and wooded swampland to the north and west. The open water habitat possesses submerged, floating and low emergent vegetation, which was dominated by water primrose (*Ludwigia*). Pennywort (*Hydrocotle*), knotweed (*Polygonum*), cattails, and buttonbush are dominant along the edges of this habitat. Remnants of north-south trending hedgerows that had separated former agricultural fields are evident in the Watershed. Some large snags are present, and are particularly prevalent in the eastern extent of the Complex, near Highway 111.

The area generally situated between the Engineered Drainage Ditch and Cahokia Creek, including the former golf course and former agricultural fields, also consists of a complex of shallow open water habitat, marshes, and wooded swampland.

That northwestern portion of the Watershed is slightly more elevated than the remainder of the Watershed, and contains man-made lakes (former borrow pits), wetlands and scattered woodlands. The four man-made lakes, ranging in size from approximately 3 to 7 acres, are located off of an access road paralleling Interstate 70/55, west of the Engineered Drainage Ditch. (Note for sake of reference, these four lakes are referenced herein as A, B, C and D, proceeding from west to east, within the photographs presented in Attachment A).

The southwestern portion of the Watershed is largely wetland habitat, dominated by expansive growth of cattails and sedges, with some isolated colonies of common reed. Open water exists in the area just north of Collinsville Road and east of Schoenberger Creek. The Engineered Drainage Ditch extends through this wetland area, terminating near this open water. The Ditch is a shallow channel generally 1 to 2 feet in depth, typically bordered by cattail marsh.

The Watershed receives surface water drainage from the Facility Area at two outfall locations, the West Ditch outfall and the Rose Creek outfall. These areas are detailed below.

2.3.3.1 West Ditch Outfall

The West Ditch #1 outfall drains to Old Cahokia Creek Watershed via a culvert located in a deciduous wooded area along the north side of Collinsville Road. A deep scour channel extends from this outfall north through a heavily wooded section of sloping land bordering the north side of the road. Less than 100 feet or so north of the outfall, the topography levels and the scour channel becomes shallower. The channel extends into a wet meadow covered by low forbs with scattered shrub and sapling growth. The wet meadow is situated between the woodland bordering Collinsville Road and the open water habitat located approximately 350 feet north-northwest of the outfall. The northeast side of the open meadow borders a small area of swampy habitat dominated by large trees, which opens further to the northeast into a marsh dominated by cattails. To the west and southwest, the open meadow changes to a small low-lying marsh area dominated by cattails, which borders a wooded swampy area further to the west.

A distinct flow path is evident through the southern portion of this meadow, but becomes less distinct and begins to fan out into smaller channels near the center of the meadow. The meadow will possess some very shallow standing water during wet portions of the year, but is typically dry.

Along the edge of the wet meadow and the open water habitat, two duck blinds and evidence of recent waterfowl hunting, including duck decoys and spent shotgun shells, were evident in the open water and meadow near these blinds.

2.3.3.2 Rose Creek Outfall

The Rose Creek outfall drains to Old Cahokia Creek Watershed via a culvert located in a deciduous wooded area along the north side of Collinsville Road. A deep scour channel extends from this outfall north through a heavily wooded section of sloping land bordering the north side of the road. An open area of grass and forbs is present roughly 140 feet downstream. A large expanse of common reed is located northwest of these woods, roughly 350 feet downstream of the outfall. A large pile of debris and branches, as well as two drum carcasses, were encountered in the wooded areas between these two open areas. The scour channel begins to fan out into a broad depositional area within a transitional zone of small willows along the wooded area

2.3.4 Schoenberger Creek

Schoenberger Creek in the vicinity of Collinsville Road is a channelized stream roughly 15 to 25 feet in width. The Creek appears to be a perennial stream; however, no discernible flow was observed during the sampling events. Floating and emergent vascular vegetation is present along the sides of the creek. This vegetation is particularly predominant on the stretch of the creek immediately upstream (south) of Collinsville Road. The spoil banks along the side of the creek are vegetated with grass and forbs that appeared to be maintained (mowed), or are covered with shrub and small tree growth.

3.0 PROBLEM FORMULATION

The problem formation establishes the goals, breadth, and focus of the BERA. The problem formulation for this Site involves identifying the exposure pathways by which COPECs have migrated or may migrate from the Facility Area and ultimately to link these routes of migration to receptors and habitat on and downgradient of the Facility Area. The problem formulation also establishes the assessment endpoints or specific ecological values to be protected. The questions that need to be addressed are defined based on potentially complete exposure pathways and ecological effects. A conceptual model of the Site is presented that shows the complete exposure pathways evaluated in the BERA. The relationship of the measurement endpoints to the assessment endpoints is also discussed.

Problem formulation was originally completed as part of the *BERA Workplan* (ENTACT 2006) development, and has been refined as new Site data were generated during the RI.

3.1 COPEC FATE AND TRANSPORT AND ECOTOXICITY

Concentrations of arsenic, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc were detected in sediments and surface water at concentrations exceeding Region V ecological screening levels (ESLs) and are considered COPECs at the Site (i.e., their potential to pose potential ecological risk needs to be further assessed during the BERA process). Summaries of the fate and transport properties of the COPECs and their potential toxicity based the Agency for Toxic Substances and Disease Registry (ATSDR) toxicity profiles (URL: http://www.atsdr.cdc.gov/toxpro2.html) are listed below:

Arsenic is a naturally occurring element widely distributed in the environment. Arsenic in animals and plants combines with carbon and hydrogen to form organic arsenic compounds. Arsenic cannot be destroyed in the environment and it can only change in oxidation state. Fish and shellfish can accumulate arsenic, but the arsenic in fish is mostly in a form that is not harmful to the fish.

Barium is a silvery-white metal that takes on a silver-yellow color when exposed to air. Barium occurs in nature in many different forms including solids such as powders or crystals, and they do not burn well. In aquatic media, barium is likely to precipitate out of solution as an insoluble salt. Barium is not very mobile in most soil systems. There is information that barium bioconcentrates in certain plants and aquatic organisms.

Cadmium is a natural element in the earth's crust. It is usually found as a mineral combined with other elements (e.g., with oxygen as cadmium oxide, etc.). It binds strongly to soil particles. It does not breakdown in the environment, but can change forms. Some cadmium dissolves in water. Fish, plants, and animals take up cadmium in the environment. Cadmium stays in the body for a very long time and can build up from many years of exposure to low levels.

Chromium is a naturally occurring element found in rocks, animals, plants, soil, and in volcanic dust and gases. Chromium is present in the environment in several different oxidation states; the most common forms are chromium III and VI. Chromium III is also considered to be an essential nutrient. Chromium has a strong affinity to soil and only a small amount dissolves in water. Fish do not appreciably accumulate chromium in their bodies from water.

Copper and its compounds are naturally present in the earth's crust. In aerobic sediments, copper is bound mainly to organics (humic substances) and iron oxides. However, in some cases, copper is predominantly associated with carbonates. In anaerobic sediments, Cu(II) will be reduced to Cu(I) and insoluble cuprous salts will be formed. In natural waters, copper is predominantly in the Cu(II) state, with most of it complexed or tightly bound to organic matter. Little is present in the free (hydrated) or readily exchangeable form. The combined processes of complexation, adsorption, and precipitation control the level of free copper (Cu(II)). The chemical conditions in most natural water are such that, even at relatively high copper concentrations, these processes will reduce the free Cu(II) concentration to extremely low values. Copper shows a low potential for bioconcentration in fish. There are limited data suggesting that there is little biomagnification of copper in the aquatic food, with biomagnification ratios less than one.

Lead is a naturally occurring metal which does not break down, but organic lead compounds change composition due to sunlight, air, and water. Lead has a high affinity to soil and sediment particles. Plants and animals may bioconcentrate lead, but lead is not biomagnified in the aquatic or terrestrial food chain.

Mercury is a naturally occurring metal which has several forms. Mercury combines with other elements, such as chlorine, sulfur, or oxygen, to form inorganic mercury compounds. Mercury also combines with carbon to make organic mercury compounds, the most common of which is methylmercury. Accumulation and toxicity of mercury in aquatic biota, domestic animals, and humans is well documented, but relatively little is understood about these processes in wild terrestrial mammals. Mercury levels are biomagnified within terrestrial food chains. Among carnivorous species, mercury levels are generally highest in fish-eating animals. Experimental studies have shown many mammal species are sensitive to mercury intoxication, but documented incidents of mercury poisoning in wild mammals are rare due to the inability to observe wild populations.

Selenium is ubiquitous in the environment, being released from both natural and anthropogenic sources. The primary factor determining the fate of selenium in the environment is its oxidation state. In general, elemental selenium is stable in soils and is found at low levels in water because of its ability to coprecipitate with sediments. The soluble selenates are readily taken up by plants and converted to organic compounds such

as selenomethionine, selenocysteine, dimethyl selenide, and dimethyl diselenide. Selenium is bioaccumulated by aquatic organisms and may also biomagnify in aquatic organisms.

Silver is a naturally occurring metal found in the environment and combines with other elements such as sulfide, chloride, and nitrate. Silver does not appear to significantly concentrate in aquatic animals.

Zinc is an element commonly found in the Earth's crust. Zinc is capable of forming complexes with a variety of organic and inorganic groups (ligands). In the aquatic environment, zinc partitions to sediments or suspended solids in surface waters through sorption onto hydrous iron and manganese oxides, clay minerals, and organic material. Biological activity can affect the mobility of zinc in the aquatic environment, although the biota contains relatively little zinc compared to the sediments. Zinc bioconcentrates moderately in aquatic organisms; bioconcentration is higher in crustaceans and bivalve species than in fish. Zinc does not concentrate in plants, and it does not biomagnify through terrestrial food chains.

3.2 COMPLETE EXPOSURE PATHWAYS AND CONCEPTUAL SITE MODEL

Complete exposure pathways, which are the paths a COPEC takes from its source into the environment and ultimately to a receptor, have been identified and are presented in the ecological Conceptual Site Model (CSM) provided as **Figure 4**.

In summary, the CSM identifies the slag that has been stockpiled and/or ground and redistributed over the surface of large portions of the Facility Area as a potential source of COPECs which could subsequently migrate away from the Facility Area via surface water transport to downgradient ecological receptors. Surface run-off from the exposed slag would transport and deposit COPECs into the ephemeral drainage ditches (i.e., East and West Ditches). In addition, portions of the ditches were cut into areas where slag had historically been used as fill; as a result, this slag has become exposed within these ditches and adjacent spoil banks. Certain COPECs are present in elevated concentrations within the slag residuals present in the Facility Area, and are considered the primary smelter-related COPECs; arsenic, cadmium, copper, lead, and zinc.

The drainage ditches serve to collect surface water run-off and convey it to portions of the West Ditch and portions of Rose Creek down-gradient of the Facility Area. These down-gradient sections of the West Ditch and Rose Creek are also ephemeral in nature. They eventually discharge to depositional wetland habitats within the Old Cahokia Watershed located north of the Facility Area, via the West Ditch Outfall and the Rose Creek Outfall, respectively. Further down-gradient from these depositional wetlands lies perennial aquatic habitat; a large expanse of open water near the West Ditch Outfall, and the Engineered Drainage Ditch near the Rose Creek Outfall. Surface waters from the

Watershed eventually discharge to Schoenberger Creek via outfalls located just to the north of Collinsville Road.

COPECs from the source areas within the Facility Area, thus, have the potential to migrate via surface water transport to these down-gradient drainage features, wetlands and aquatic habitats either in a dissolved form or as solids suspended in the water column and re-deposited as sediments.

As discussed previously, the BERA focuses on benthic macroinvertebrates and wetland plants as the receptors of interest (ROI). The ROI are the indicator species selected for evaluation in the BERA. Benthic macroinvertebrates can be exposed to COPECs through direct contact with COPECs in sediment, sediment pore water, and surface water. Wetland plants can be directly exposed to COPECs through uptake from sediment.

3.3 ASSESSMENT AND MEASUREMENT ENDPOINTS

Assessment endpoints, which are defined as explicit expressions of the environmental value that is to be protected (EPA, 1992a), are summarized in Table 3-1. Elevated levels of heavy metals in sediment and surface water are known to be toxic to benthic organisms; thus, preservation of the health and diversity of the benthic macroinvertebrate community is proposed as one of the assessment endpoints for the Site. In addition, COPECs in surface water runoff from the Facility Area discharging into the Old Cahokia Watershed may affect plants; thus, preservation of the health and diversity of the wetland plant community is proposed as the second assessment endpoint for the Site.

A Measurement Endpoint is "a measurable ecological characteristic that is related to the valued characteristic chosen as the assessment endpoint and is a measure of biological effects (e.g., death, reproduction, growth) of particular species, and they can include measures of exposure as well as measures of effects" (EPA, 1997). Measurement endpoints should include risks to, and be representative of, all of the species, populations, or groups included in the assessment endpoint(s) that is/are being investigated in terms of those particular measurement endpoints (**Table 3-1**).

4.0 ECOLOGICAL FIELD INVESTIGATIONS

This section describes the investigative tasks conducted at the Site to provide the data used to develop the BERA. The investigations included the characterization of the aquatic ecosystems present in the Facility Area drainage ditches, Rose Creek, Schoenberger Creek and related wetlands areas in the Old Cahokia Watershed, which are hydraulically connected to the Facility Area, and the collection of biological and chemical data. The data collected included the following:

- Chemical analyses of sediment and surface water from the ephemeral ditches and streams draining the Facility Area, within the Old Cahokia Creek Watershed, and from reference areas;
- Whole sediment toxicity tests of sediment collected from the ephemeral ditches and streams on and downstream of the Facility Area, including the discharge areas in the Old Cahokia Creek Watershed and reference areas;
- Chemical analyses of benthic macroinvertebrate and wetland plant tissues collected from the ephemeral ditches and streams on and downgradient of the Facility Area, including the discharge areas and reference areas;
- Community evaluation of benthic macroinvertebrates collected from the ephemeral ditches and streams on and downgradient of the Facility Area, including the discharge areas and reference areas; and,
- Community evaluation of wetland plants in the discharge areas within the Old Cahokia Creek Watershed and from a reference area within the Watershed.

Samples were taken from locations within drainage ditches, ephemeral streams, and wetlands and from reference sites. Reference sites were selected that as closely as possible mirror the characteristics of the drainage way, stream or wetland being investigated. Due to the ephemeral nature of the surface water features, the goal of sample location selection was to find depositional areas with viable aquatic habitat. The sampling locations and the procedures used to collect the samples are discussed in detail in the SSP and/or the BERA WP and are summarized below.

4.1 SEDIMENT AND SURFACE WATER CHEMISTRY

Sediment and surface water samples were collected from locations detailed in Figure 3 and summarized in Table 4-1 for chemical analysis of COPECs. The methodologies employed for the collection of these samples are presented in Subsection 2.5 of the RI Report. Several of the surface water and/or sediment sample locations are co-located with bioassay and/or biota tissue samples, as described in Subsections 4.2 and 4.3. These co-located data can be used to determine whether any observed toxicity or changes in community structure are related to changes in sediment chemistry.

Prior to collection of surface water and sediments, a YSI Multi-probe meter was utilized to measure various field parameters at each sampling location. The physical parameters measured included: temperature, specific conductivity, dissolved oxygen and reduction-oxidation (redox) potential. Table 4-2 summarizes these field parameter measurements. These data illustrate that during summer months, the surface water locations sampled tended to show very low levels of dissolved oxygen and negative oxidation-reduction potentials (i.e., reducing conditions).

4.2 WHOLE SEDIMENT BIOASSAYS

The potential toxicity of smelter-related COPECs in sediments was tested directly with whole sediment toxicity tests (bioassays). These tests used standard laboratory test organisms to measure the toxicity of the entire mixture of chemicals present in sediments. Sediment bioassays were performed using a 10-day sediment bioassay with *Chironomus tentans* (C. tentans).

4.2.1 Bioassay Sediment Sample Collection

Bulk sediment samples for the bioassay tests were collected as grab samples from the top 6 inches of sediment (the biologically active zone) following the procedures outlined in the SSP and the BERA Workplan, at a total of seven locations. The locations of these samples are depicted in Figure 3, referenced by the chemistry sample they were collocated with. All bioassay sediment samples were collected from depositional areas where standing water was present. Multiple grab samples were retrieved to obtain enough sediment for the bioassay testing.

The bioassay sample locations are summarized in Table 4-3.

With the exception Sample SD-CT-13, each bioassay sediment sample was colocated with a corresponding sediment chemistry sample, as well as co-located with a benthic macroinvertebrate tissue sample and benthic macroinvertebrate community study location (refer to Subsections 4.3.1 and 4.4.1). Collection of a bioassay sediment and benthic tissue samples was also planned at or near the Rose Creek Outfall. Examination of this area indicated that the only substantial area of standing water was a large isolated pool in the bed of Rose Creek, roughly 200 feet north of Collinsville Road. The sediment chemistry sample SD-13 had previously been collected form Rose Creek immediately north of the Road. It was thus decided to collect the bioassay and tissue samples from this location were surface water was present.

4.2.2 Bioassay Laboratory Methods

A 10-day survival and growth sediment toxicity (biossay) test with the freshwater midge *Chironimus tentans* was performed on the seven sediment samples and a control sediment sample, employing four replicates per sample location. This bioassay followed the

methods developed by the American Society for Testing and Materials (ASTM E1706-95b, Standard Test Methods for Measuring the Toxicity of Sediment-Associated Contaminants with Fresh Water Invertebrates) and the EPA's (2000) Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates. The bioassay studies were performed by Aquatic Toxicology and Microbiology Laboratory (ATML), University of Michigan, Ann Arbor, Michigan,

Sediment material was prepared from the collected samples by thoroughly mixing the sediment and removal of large debris that consisted mostly of decaying plant material, and all visible fauna (Table 4-4). The laboratory control sample was prepared from shredded brown paper toweling. At the end of the 10-day study, the sediments were sieved and the surviving organisms were counted. Other indigenous species in the sediment, mostly aquatic worms, were removed but not included in the survival count.

The report prepared by ATML detailing the methods of the bioassay studies is provided as Attachment B.

4.3 TISSUE RESIDUE STUDIES

The quantity of metals in an abiotic media is not always indicative of the toxicity of that media to biota. The fraction of the total metal concentration which is bioavailable is usually a better indicator of toxicity. Factors which can influence the bioavailability of metals in sediments include organic carbon, cation exchange capacity, pH, sulfides, and water hardness. Macroinvertebrate and plant tissue samples were collected following methods presented in the *BERA Workplan*. One field duplicate sample of tissue was collected per every 10 samples. All tissue samples were analyzed for RCRA metals and zinc and moisture content. Tissue samples were collected by Natural Resources Consulting, Inc (NRC) of Cottage Grove, Wisconsin. Tissue samples were collected during the same RI sampling event as the sediment sampling for the bioassays. Attachment C and Attachment D, respectively, provide reports prepared by NRC on the methods and results associated with the macroinvertebrate and plant tissue sample collection.

4.3.1 Macroinvertebrate Tissue

Macroinvertebrate tissue samples were collected from the nine locations illustrated in Figure 3 and summarized in Table 4-5. As described in Subsections 4.1 and 4.2.1, the locations of tissue samples were co-located with sediment samples collected for bioassay purposes and, with the exception of sample SD-13, with the sediment samples collected for chemical analysis

Specifically, an area for tissue sampling/community survey was selected by the field biologist to encompass the associated sediment sampling location; these areas are described in Table 4-6. The selected area was then sampled for benthic macroinvertebrates using D-nets following the procedures described in Region IV EPA

guidance documents (2002b), as specified in NRC's report presented in Attachment C. A minimum level of effort of 1 1/4 hour was applied to each sample location, however due to the need to obtain a minimum of 6 to 8 grams of tissue for chemical analyses, the level of effort at a given location was extended to up to 3 hours duration. Also, the initial size of the sample area was occasionally expanded to obtain the requisite sample mass. Specimens were separated from the retrieved matrix of sediment and debris using white pans and forceps; sediments were also sieved in the field to remove smaller specimens. The collected specimens were retained in containers, the samples were enumerated, and each specimen was identified at least to the family level at the conclusion of the collection period. Selected organisms of each taxon were preserved in ethanol and retained for future reference. Aquatic macroinvertebrate species observed to comprise the majority of the community biomass were retained for tissue analysis. The specimens for tissue analysis were rinsed with copious amounts of distilled water placed into labeled plastic bags and stored on ice for shipment to the analytical laboratory under a chain-ofcustody form. Typically, the majority if not all of retrieved specimens from a sampling location were included in the tissue sample submitted for analysis, in order to provide the minimum amount of biomass needed for analysis (6 to 8 grams).

4.3.2 Plant Tissue

Vegetation samples for plant tissue analysis were collected at two downstream wetland locations (the West Ditch Outfall and Rose Creek Outfall) and one Reference Area (located at the former Golf Course), as shown on Figure 3. The West Ditch Outfall, Rose Creek Outfall, and the Reference Area were located in the same wetland complex; however, the Reference Area was selected to be hydrologically similar to, but isolated from, the two outfall areas or any other surface influences from the Facility Area.

Plant tissue sampling was performed in concert with the Wetland Plant Community Surveys described in Subsection 4.4.2 below. Tissue sample were retrieved from the same areas assessed by the community surveys. As described below, selected tissue samples at the West Ditch and Rose Creek Outfalls were also generally co-located with sediment samples collected for chemical analyses.

At the West Ditch Outfall, two plant tissue samples were collected. One sample location (PT-SD-31) was immediately downgradient of the stormwater outfall on the south edge of the wetland complex. This location was in the scour channel approximately 30 feet downgradient of sediment chemistry sample SD-31. Sediment chemistry sample SD-45 was also located near PT-SD-31, and may be more representative of the depositional environment downstream of the outfall. The second plant tissue sample was located near the north edge of the wet meadow area located between the outfall and the open water habitat to the northwest. This area was also investigated as part of the vegetation community survey. The sample was held at the laboratory, but not analyzed.

At the Rose Creek Outfall wetland, two plant tissue samples were also collected. One sample location (PT-SD-16) was located at the outfall immediately downstream of Collinsville Road and immediately downstream of sediment location SD-16. This sampling location is in a low terrace immediately adjacent to the scour channel. A second sample was collected at the termini of the Rose Creek channel (this was in the general area of sediment sample TRC-2-S1, collected in July 2007). This sample was held at the laboratory, but not analyzed.

Finally, one plant tissue sample (PT-REF) was collected from the Reference Area location. This location was at a storm drain outfall on the south side of the Collinsville Road between the West Ditch and Rose Creek outfalls.

Tissue samples were collected from herbaceous plants showing visual signs of environmental stress such as chlorosis, malformed leaves, and leaf necrosis. Plants exhibiting signs of stress were noted at both the West Ditch and the Rose Creek Outfalls; however, no attempt was made to quantify the lateral extent of plants exhibiting stress. At the West Ditch Outfall, plants exhibiting chlorosis were specifically noted in and along the edges of the scour channel extending downstream of the outfall (including PT-SD-16), in the survey transect plots in the wet meadow, and near the edge of the wet meadow and the open water habitat, in the vicinity of SD-34. At the Rose Creek Outfall, stress was noted in plants at the belt transect where PT-SD-16 was located, and at the releve plot where plant sample PT-SD-39 was collected. There was no evidence of stress at the reference location.

Approximately 50 to 60 grams of tissue material were collected at each sample location. Each sample consisted of a composite from three to five different herbaceous plant species. The samples consisted of whole plants cut just above the ground level. The collection and sample preparation methods are detailed in NRC's memorandum report presented in Attachment D. After preparation and labeling of sample bags the samples stored on ice and transported under chain-of-custody form to the analytical laboratory.

4.4 COMMUNITY STUDIES

The community studies were performed and the reports prepared by NRC on the methods and results associated with the community assemblage studies are presented in Attachment C and Attachment D, respectively. These studies are summarized below.

4.4.1 Macroinvertebrate Community

A benthic macroinvertebrate community (assemblage) structure and function assessment was performed in the ephemeral creeks and streams hydraulically connected to the Facility Area (East Ditch #1, East Ditch #2, West Ditch #2, Rose Creek, and Schoenberger Creek) and in the Old Cahokia Watershed wetland. Community surveys of benthic macro-invertebrates were conducted at the same nine locations and following the

same procedures as outlined in Section 4.3.1 for the collection of macroinvertebrates for tissue analysis. A tenth location, East Ditch # 2 (BT-SD-02), became desiccated before a full sampling effort could be performed. Consequently, only a cursory qualitative taxonomic list could be developed for this location.

4.4.2 Wetland Plant Community

The wetland plant community field survey included measurement of species richness and dominance, percent cover, and a floristic quality assessment (FQA). Vegetation data for the wetland community assessment were collected at the same three sampling locations were tissue samples were collected as described in Subsection 4.3.2. The West Ditch Outfall, Rose Creek Outfall, and the Reference Area sampling areas were located in the same wetland complex; however, the Reference Area was selected to be hydrologically isolated from surface and groundwater influences from the Facility Area. The Reference Area was also selected to have similar hydrologic and topographic characteristics as the West Ditch and Rose Creek outfalls. Specifically, the Reference Area was located immediately down-gradient of an outfall that channels surface water from Collinsville Road to the Watershed. A scour channel was located beneath this outfall; indicating that this Reference Area receives similar physical stress associated with periodic high volume discharges of storm water as the outfall locations.

Wetland vegetation communities were surveyed using procedures described in *Methods* for Evaluating Wetland Condition #10 - Using Vegetation to Assess Environmental Conditions in Wetlands (EPA 2002a) and methods for conducting floristic quality assessments in Illinois (Taft and others 1997; Swink and Wilhelm 1994). The heterogeneous nature of the Old Cahokia Creek wetland complex and unknown disturbance histories of the survey areas precluded establishing sample locations with uniform plant community characteristics. Rather, sample locations with similar hydrologic regimes and similar topographic positions on the landscape within the wetland complex were selected. Depositional environments downstream of the outfalls were selected to represent variations in disturbance regimes between the West Ditch Outfall, Rose Creek Outfall, and Reference Area. As discussed in Section 4.3.2, the sampling locations at the West Ditch Outfall and Rose Creek Outfall survey areas, the sampling locations encompassed areas of obvious disturbance and signs of environmental stress to the dominant vegetation of the plant communities. The sampling areas were selected to represent semi-open to open herbaceous or shrub-scrub wetland community types characteristic of disturbed stormwater outfalls; to provide a conservative assessment the specific material sampled was highly skewed toward organisms showing overt signs of environmental stress.

The vegetation communities were surveyed using a combination of the standard releve (plot-based vegetation sample) and line transect sampling methods as detailed in NRC's memorandum report presented in Attachment D. An inventory of the plant species present within each releve plot was completed and each plant species was assigned

Old American Zinc Plant Site Baseline Ecological Risk Assessment Revision: 0 August 2008

appropriate coefficients of conservatism (CC) to each species for purposes of developing the FQAI. Complete descriptions of the vegetation sampling procedures are provided in Attachment D.

5.0 CHARACTERIZATION OF EXPOSURE AND EFFECTS

The extent of potential exposure and effects are characterized in this section. Exposure is the situation where a stressor (e.g., an elevated concentration of a COPECS) is present at the same place and time as, or is in contact with, a plant or animal. Both an exposure-response analysis, which describes the relationship between size, frequency, or duration of exposure to a chemical stressor and the magnitude of the response, and evidence of causality will be used in determining how likely it is that the COPECs found at the Site actually cause the effects on the measurement and assessment endpoints.

5.1 CHARACTERIZATION OF EXPOSURE

The results of the field investigations used to collect data for the BERA are summarized in the following subsections. Where appropriate, these data are compared to preliminary screening values to refine the list of COPECs for the Site; these COPECs are further evaluated in Section 5.2 and Section 6. A detailed description of sediment chemistry at the Site is presented in Subsection 4.3.2.1 if the RI Report and a detail description of the distribution of COPECs within surface water at the Site is presented in Section 4.4 of the RI Report.

5.1.1 Sediment and Surface Water Chemistry

A total of 34 investigative and six field duplicate surface water samples were collected from the drainage features and aquatic habitats at locations illustrated in Figure 3. The results of the chemical analyses of the sediment and surface water samples are presented in Tables 5-1 and Table 5-2, respectively. As many of the surface water samples were collected in drainage features which are ephemeral in nature and represent shallow, isolated and stagnant pools of water. Many of sampling locations have no standing water at other parts of the year.

EPA Region 5 RCRA Corrective Action ecological screening levels (ESLs), available at http://www.epa.gov/Region5/rcraca/edql.htm, were used to initially determine the COPECs in these media. The ESLs are Region 5 media-specific values for RCRA Appendix IX hazardous constituents. ESLs are conservative screening levels with which the surface water and sediments concentrations were compared to help focus the analysis on the chemicals that are most likely to pose an unacceptable risk to the environment. ESLs alone are not intended to serve as cleanup levels.

The drainage features, wetlands, and aquatic habitats which were sampled included ephemeral, intermittent and perennial features. The drainage ditches in the Facility Area, as well as Rose Creek and the West Ditch downgradient of the Facility Area are ephemeral in nature. They do not receive base flow from the underlying shallow aquifer, and only flow in response to precipitation events. Much of the East Ditch #1 and a short section of Rose Creek in the southwest corner of the Facility Area retain some stagnant,

standing water throughout the year. This more or less permanently inundated area includes sampling locations SW/SD-1, SW/SD-5, SW/SD-06 and SW/SD-08. The remaining stretches of the ephemeral drainage features both within and downgradient of the Facility Area are typified by dry sections of ditch/creek bed and isolated, stagnant pools.

The Rose Creek and West Ditch outfalls lie at the edge of a terrace that borders the north side of Collinsville Road. These outfalls discharge to wetland habitats that border this terrace slope, and extend into the Watershed Area. These wetlands may be intermittently inundated (i.e., possessing shallow standing water resulting from seasonably high water table). At the West Ditch Outfall area, these bordering wetlands grade abruptly to perennially open water. This open water habitat has bordering wetlands which are also inundated more or less perennially. At the Rose Creek outfall, a large expanse of wetlands exists downgradient of the outfall. This wetland area is also anticipated to be inundated only intermittently if at all. While expanses of perennial open water and mixed open water /emergent wetlands exists to the west of the Engineered Drainage Ditch and in the former golf course area to the east of the Engineered Drainage Ditch, the closest permanent open water downgradient of the Rose Creek outfall is believed to be within the Engineered Drainage Ditch itself. Schoenberger Creek, which receives drainage from the southwestern portion of the Watershed, is a perennial stream.

5.1.1.1 Sediment Chemistry

Arsenic, cadmium, chromium, copper, lead, mercury, silver, and zinc exceeded their respective conservative ESL for sediment in at least one sample. Thus, these metals are the COPECs for sediment. The potential for these COPECs to pose a potential risk to aquatic resources is evaluated in this BERA. Several pesticides were also detected in sediment (aldrin, dieldrin, DDE, DDT, endrin, and gamma chlordane) at concentrations above ESLs, but these chemicals are not related to the former smelter operations and are not considered COPECs. The focused sampling for pesticides suggests that their source may be the Cargill facility located along the southeast corner of the Facility Area. The presence of pesticides in sediments from the Cargill facility may contribute locally to stress on the aquatic macroinvertebrate community in the ephemeral drainage features draining the Facility Area.

The primary smelter-related COPCs at the Site are arsenic, cadmium, copper, lead and zinc. With the exception of arsenic, these COPCs show a high degree of correlation in the extent and magnitude of their occurrence. As zinc is a primary COPC at the Site, the correlation between zinc and the other heavy metals found in the sediment was evaluated. A statistical comparison made between the concentrations of zinc and the other metals within the entire sediment data set, including both surface and subsurface samples. Specifically, the value for the Pearson Product Moment Correlation Coefficient [r] was calculated between the dataset of zinc concentrations paired with the concentrations of each of the other heavy metals. The value of r provides a measure of linear correlation between sets of paired data. Values of r can range between -1.0, where the two sets of

paired data show perfect negative linear correlation, to +1.0, where the two sets of paired data show perfect positive linear correlation. An r value of 0.0 indicates the two sets of paired data show no correlation. A strong correlation between the relative concentrations of two analytes suggests the two analytes are co-located; i.e., where one analyte is found at a relatively elevated concentration, there is a strong probability that the other one will also be present at a relatively elevated concentration. This relationship in turn suggests a common source for both analytes, as well as a similar pattern of migration. A weaker relationship could suggest differential migration between two analytes that originated from the same source, multiple sources for one or both analytes, and/or one of the two analytes present predominantly at ambient or background concentrations. The correlations are summarized below:

Correlation Between Concentrations of Zinc and Other Metals				
Metal	Value - r [1]			
Arsenic	0.264454			
Barium	0.119209			
Cadmium	0.404159			
Chromium	-0.07331			
Copper	0.775668			
Lead	0.656817			
Selenium	0.273031			
Silver	0.471894			
Mercury	0.048625			

1 - Pearson Product Moment Correlation Coefficient

The strongest relationship is exhibited between the concentrations of zinc and copper, followed by lead, silver, and cadmium. The weakest relationship with zinc concentrations is demonstrated by chromium, followed by mercury and barium. These weak correlations suggest that the presence of chromium, barium and mercury in sediments is not attributable to the historic smelting operations on the Facility Area.

Other lines of evidence also suggest that historic smelting operations are not responsible for the presence of these chemicals in sediments. For example, the five highest sediment concentrations of chromium were found in Schoenberger Creek, which is not hydraulically connected to the Facility Area with the second highest concentration detected in sample SD-22, located upstream of the outfall from the Old Cahokia Watershed into Schoenberger Creek (refer to Subsection 5.2.3.6). Within Rose Creek, the concentration of chromium in sediments was higher in the reference samples than in samples collected adjacent to and downstream of the Facility Area. Lastly, within the Engineered Drainage Ditch, the concentration of chromium in the surface and deeper samples from location TRC-2-S, which is located down-gradient of the West Ditch Outfall, is similar to that observed in the Engineered Drainage Ditch upstream of the West Ditch Outfall (at sample location 51-Ditch). Further, a similar pattern of increasing chromium concentrations with depth was observed at both locations (TRC-2-S and 51-

Ditch) the source of the chromium at TRC-2-S is not associated with the Rose Creek Outfall.

Like chromium, the concentration and general vertical distribution of barium at sample location TRC-2-S in the Engineered Drainage Ditch was similar to the upstream reference sample SD-51-Ditch, suggesting sources other than the Facility Area are contributing barium to this Ditch. There is a moderate correlation between the occurrence of barium and lead (r = 0.4319), suggesting a possible common source of these metals. For example, lead and barium have been found to be co-located in urban soils impacted by lead-based paints (OMOE, 2002). Barium was also used as an additive in diesel fuel (ATSDR Toxicological Profile for Barium) and the lead and barium could be from runoff from areas affected by the combustion of diesel fuel.

In addition to the weak correlation between concentrations of zinc and mercury in sediments, the mean mercury concentration in samples from the ditches draining the Facility Area (2.28 mg/Kg) is lower than the mean concentration of mercury in samples from Rose Creek up-gradient of the Site (SD-04, and RSD1 through RSD4; an arithmetic mean of 2.75 mg/kg), suggesting historic Facility Area operations are not the source of mercury to sediments in the area. Elevated levels of mercury in sediment samples in the vicinity of the Site may also be attributable to power plant and motor vehicle emissions. There are five coal fired power plants in the greater metropolitan St. Louis area. A U.S. EPA study on motor vehicle mercury emissions provided evidence of a mobile source contribution of environmental mercury (U.S. EPA 2004).

Thus, the sediment data strongly suggest that barium, chromium, and mercury are not present within sediments of drainage ways and aquatic habitats downstream of the Facility Area as a result of historic smelting operations. Even so, to be conservative, these three metals were not eliminated from the list of COPECs for the BERA, and are evaluated herein.

5.1.1.2 Surface water Chemistry

Total and/or dissolved concentrations of barium, cadmium, chromium, lead, mercury, selenium, silver, and zinc exceeded the conservative screening level ESLs for surface water in at least one sample (Table 4-1). Consequently, these metals are selected as the COPECs for surface water. Note however, that the comparison to ESLs to select COPECs is very conservative because it does take into account the nature of the source of the source of the surface water (i.e, that many of surface waters sampled in the vicinity of the Site are ephemeral). A comparison of dissolved COPEC concentrations detected in perennial surface water features (specifically, the open water habitats and Engineered Drainage Ditch within the Cahokia Creek Watershed, and Schoenberger Creek) to Illinois General Use Surface Water standards reveals no exceedence of these standards. These standards are not applicable to waters contained within the ephemeral drainage features at the Site.

5.1.2 Bioassays

The results of the whole sediment bioassay are summarized in Table 5-3, which also presents a description of the test sediments. The complete bioassay report is provided in Attachment B. Although the laboratory negative control survival was 87.5%, which meets the test requirement of having at least 70% survival in the control and indicates the results of the bioassay are valid, all seven test samples, including the upstream reference sample, had effectively 100 percent mortality. No test organisms (i.e., midges) survived in five of seven tested samples and only a single midge survived in the other two tested sediment samples. However, some indigenous species, mostly aquatic worms, were found in the test sediments at the start and at the end of the study period.

These findings suggest that the results of the whole sediment bioassay are not likely to provide important information about the potential toxicity of COPECs in sediments to benthic macroinvertebrates for several reasons.

- No pattern of mortality with respect to location was observed. Test organism mortality was consistently high regardless of their location on, or relative to, the Site. If Site-related COPECs were solely responsible for the observed mortality, greater survival would have been expected in reference locations or more downstream, less potentially affected locations. Such a pattern was not observed.
- No pattern of mortality with respect to COPEC concentrations was observed. As with location, if Site-related COPECs were primarily responsible for the mortality of test organisms, mortality would be expected to vary with varying COPEC concentration; low mortality would be expected at locations with low COPEC concentrations and high mortality at locations with elevated COPEC concentrations. Such a dose-response relationship was not observed. Test organism mortality was high over zinc concentrations ranging from 750 mg/kg to 35,000 mg/kg; lead concentrations ranging from 70 mg/kg to 3300 mg/kg; and cadmium concentrations ranging from 19 mg/kg to 460 mg/kg. The absence of any pattern of mortality with varying COPEC concentrations may be indicative of the presence of some other, more important stressor in the sediments (or an issue with the test conditions).
- Nearly all of the mortality of test organisms occurred within the first 24 hours of the test. This suggests some characteristic of the test conditions may have severely affected the test organisms. One observation suggesting that some characteristic of the test conditions (and not the tested sediments) may be the cause of the observed mortality is that native organisms contained in the sampled sediment were noted to still be alive at the termination of the test. Of course, it could also be that the native organisms have developed a tolerance to the characteristic of the sediments responsible for the observed toxicity.

• Another line of evidence suggesting test conditions and not COPEC concentrations are responsible for the observed mortality of test organisms is the change in several regularly monitored test parameters. Standard test protocols recommend that the hardness, pH, alkalinity, and ammonia in the overlying water within the treatments should not vary by more than 50% over the test duration. However, significant variability between startup and final concentrations was recorded for ammonia, which decreased by up to 426% in all the overlying water samples for the respective sediment over time, with the exception of SD-13, where it increased by a factor of three. The startup and end ammonia concentrations were higher in the test sediments (1.0 to 5.8 mg/L) than in the lab control (0.72 mg/L), except for the Day 0 ammonia concentration was lower at SD-13 (0.42 mg/L). Thus, conditions in the test vessels, not related to COPEC concentrations, could be responsible for the observed mortality.

While the presence of COPECs in sediments cannot be ruled out as a contributing factor to the mortality of test organisms in the sediment bioassay, the above observations suggest that some other factor associated with either the sediments or with the test conditions had a greater effect on the survival of the test organisms. This is an important observation because it means that the whole sediment bioassay results cannot be used as a line of evidence to determine whether the COPECs are adversely affecting the aquatic environment. Fortunately, two other Site-specific lines of evidence are available. One is the comparison of measured macroinvertebrate tissue concentrations to allowable tissue concentrations. The second is the benthic macroinvertebrate community evaluation. Each of these is described below. Further interpretation of the results of the bioassay test is presented in Subsection 6.1.2.

5.1.3 Tissue Residue Studies

The results of the chemical analyses of benthic and plant tissue are provided in Table 5-4 and Table 5-5, respectively.

5.1.3.1 Macroinvertebrates

Arsenic, barium, cadmium, chromium, lead, mercury, selenium, and zinc were detected in benthic tissue samples. Mercury was only detected at the control location, BT-SD-001. These metals were also detected in co-located sediment chemistry samples. To evaluate the bioavailablity of metals in sediments to benthic macroinvertebrates, regression analyses were performed comparing the primary COPECs (i.e., cadmium, lead and zinc) in benthic invertebrate tissue to metals in co-located sediment. A positive and statistically significant regression coefficient is an indicator that the concentration of metals in tissue is related to the concentration of metals in sediment, i.e., that metals in sediment are bioavailable to macroinvertebrates. The regressions for cadmium, lead and zinc were highly significant (i.e, $R^2 = 0.8066$; p-value = 0.00042 for cadmium; $R^2 = 0.6149$; p-value = 0.00725 for lead; $R^2 = 0.759$; p-value = 0.00121 for zinc, Figure 5,) suggesting these metals are bioavailable. However, they are substantially less

bioavailable than reported at other sites. The slope of the regression line (which is equivalent to the biota sediment accumulation factor (BSAF)) is 0.00393 for cadmium, 0.00121 for lead, and 0.00355 for zinc. This means that macroinvertebrate tissue concentrations are about 250, 800 and 280 times lower than sediment concentrations of cadmium, lead and zinc, respectively. The Site-specific BSAFs are about 10, 65 and 235 times lower than median BSAFs reported in the literature for cadmium (median BSAF of 0.0459), lead (median BSAF of 0.08) and zinc (median BSAF of 0.84), respectively (BJC, 1998).

5.1.3.1 Wetland Plants

Barium, cadmium, chromium, lead, selenium and zinc were detected in plant tissue. These metals were also detected in co-located sediment samples, except selenium was not detected in SD-16. Arsenic, mercury, and silver were not detected in plant tissue though they were detected in sediment. The concentrations of cadmium, lead, selenium, and zinc were elevated in relation to the reference tissue sample.

The concentrations of metals in plant tissue were lower than corresponding sediment concentrations (except for cadmium at SD-16, Table 5-5). Though regression analyses was not performed for plants due to the limited number of samples (two investigative and one reference), simple comparison of the range of metals concentrations in sediment locations where plant tissue was also collected provides some information about bioavailability of metals to plants and the affect of metals in sediments on the metals concentration in plants. It appears that concentrations of barium, cadmium and lead in plants are independent of sediment concentration because plant tissue concentrations remain about the same even though sediment concentrations varied substantially. The concentration of zinc in plants appears to be affected by the concentration of zinc in sediments. The affect of the concentrations of arsenic, chromium, mercury, selenium and silver in sediment on their respective plant tissue concentrations could not be determined because sediment and tissue concentrations were about the same at the two sampling locations with co-located sediment and tissue data. Given the limited number of colocated plant tissue and sediment samples, these observations need to be viewed as preliminary. Further, the plant tissue sampling effort was highly skewed towards plant specimens exhibiting overt signs of stress, which included chlorosis, malformed leaves, and leaf necrosis and it is unclear whether these findings would apply to plants in areas without obvious signs of stress. Nevertheless, the available data suggest that of the smelter-related heavy metals, only zinc is bioavailable to plants and that cadmium and lead may not be.

5.1.4 Community Studies

The ecological investigation included collection of aquatic macroinvertebrates and wetland plants for analysis of community health. The complete macroinvertebrate and plant community study reports are provided in Attachment C and D.

5.1.4.1 Macroinvertebrates

Several variables in combination are effective in characterizing benthic community structure (EPA, 1992b): numbers of taxa, numerical dominance, total abundance, ad percentage composition of major taxonomic groups (e.g., oligochaetes, chironomids, and other major insect groups). Aquatic macroinvertebrates for community assessment analysis were generally identified to the family level in the field. Thirty taxa were identified for the area waterways (Table 5-6). Fourteen of the 30 identified families have species that are air breathers, and thus provide limited information for a biological assessment of the aquatic macro-invertebrate communities. The lowest number of organisms and number of taxa were found at sampling location SD-34, which is at the edge of the open water habitat downstream from the West Ditch #1 outfall. The highest number of organisms and number of taxa were found in the sample locations in Schoenberger Creek (SD-22, SD-36, and SD-37). The lowest MBI and TBI indices were found in Rose Creek, downstream of the Facility Area at location SD-13. A lower index indicates less organic pollution. The indices at SD-13 was 6, which represents fair water quality, while the indices for the sample collected from Rose Creek at the East Ditch #1 discharge ranged from 6.94 to 7.29 indicating fairly poor water quality. Schoenberger Creek also had fairly poor water quality (TBI = 6.9-7.0, Table 5-6) even it has not hydrological connection to the ditches on the Facility Area and had the highest number of organisms and taxa.

5.1.4.2 Wetland Plant Community

The heterogeneous nature of the Old Cahokia Creek wetland complex and unknown disturbance histories of the survey areas precluded establishing sample locations with uniform plant community characteristics. The sampling areas were selected to represent semi-open to open herbaceous or shrub-scrub wetland community types characteristic of disturbed stormwater outfalls. The wetland plant community field surveys focused on measurement of species richness and dominance, and percent cover. Samples were taken from discharge locations within the wetland complex and from a reference site within the wetland complex to evaluate the potential for adverse effects. The highest total number of species was found in Plot #2 from the Rose Creek outfall sample location, though the highest number of native species was found in Plot #2 from the Reference area sample location. In general, all of the plant communities surveyed were dominated by disturbance tolerant or ruderal (weedy and adventive) species characteristic of highly altered natural environments.

5.2 CHARACTERIZATION OF EFFECTS

Often several lines of evidence are needed to evaluate whether chemicals from a site are potentially affecting the assessment endpoint(s). The BERA Work Plan identified a triad approach (i.e., sediment/surface water chemistry, bioassay testing, and community surveys and tissue sampling) for assessing the potential for adverse ecological effects on the aquatic habitats at the Site. The following subsections provide an assessment of

potential exposure to the aquatic habitats, following the three elements of the triad approach.

5.2.1 Sediment and Surface Water Chemistry

One line of evidence used to assess potential impacts to transient aquatic receptors is the comparison of chemical data to sediment and surface water screening criteria. Note that the sediment and surface water screening criteria described herein were developed for sediments lying below surface water the majority of the time where the surface water is capable or should be capable of providing for an aquatic biota habitat. The drainage ditches within the Facility Area and Rose Creek and Rose Creek outfall are ephemeral, channelized drainage features. The West Ditch outfall drains to a small wet meadow and marshland area located north of Collinsville Road. The Rose Creek Outfall drains to a scour channel that drains to a wetlands area located south of the historic location of the Engineered Drainage Ditch. All of the surface water features investigated as part of this BERA have been physically altered and provide limited aquatic habitat. comparison of chemical concentrations in Facility Area drainage features to sediment and surface water screening criteria, which are applicable to true surface waters rather than ephemeral drainage features, is a conservative evaluation of potential aquatic life impacts within the Facility Area drainage features and downstream surface waters. The main purpose of the comparison to screening criteria is to provide an understanding of the spatial extent and concentration trends of smelter-related COPECs within the aquatic features on and downgradient of the Facility Area.

5.2.1.1 Sediment

Mean probable effect concentration quotients (PEC-Q) provide a means by which the potential toxicity of mixtures of chemicals present in sediments can be compared between sample locations within a given area or a site. Mean PEC-Q were calculated for each sample location to identify segments of the Facility Area ditches and hydraulically connected water bodies that have higher versus lower overall metals concentrations, which would also suggest a higher or lower potential for aquatic toxicity.

Consensus-based sediment quality guidelines (SQGs) (MacDonald et al. 2000a) represent the geometric mean of published SQGs from a variety of sources. These SQGs are called Probable Effect Concentrations (PECs) and threshold effect concentrations (TECs). TECs are intended to identify chemical concentrations below which harmful effects on sediment-dwelling organisms are not expected. Given the conservative nature of the derivation of TECs, in most situations, no toxicity is observed when concentrations of a chemical are below its respective TEC. PECs are intended to identify chemical concentrations above which harmful effects on sediment-dwelling organisms are expected to occur more often than not. However, practical application of PECs has found that exceedence of a PEC by one or more chemicals does not mean a sediment will pose potential toxicity in many situations. The lack of toxicity when a PEC is exceeded may occur for many reasons, including the presence of confounding chemicals in the

derivation of SQGs used to establish the PECs and the use of spiked sediments to estimate toxicity of a chemical rather than testing natural sediment in which bioavailability of a chemical may be greatly reduced, as appears to be the case at this Site.

Mean PEC-Qs for metals at this Site were estimated using methods adopted from Ingersoll et al. (2000, 2001). In the case of metals, a mean PEC-Q is calculated by summing the PEC-Q for the individual metals and dividing by the total number of metals. Mercury is not included in the PEC-Q metals calculations (Ingersoll et al. (2000). Ingersoll et al. (2000) observed an overall increase in the incidence of toxicity with an increase in the mean quotients in toxicity tests, and that there is a consistent increase in the toxicity at a mean quotient of > 0.5. For the 10-day *Chironomus tentans* test, there was a 20% incidence of toxicity at mean quotients of <0.1 increasing to a 64% incidence of toxicity at mean quotients of >5.0 (Ingersoll et al, 2000). The finding of only 64% incidence of toxicity in sediment with PEC-Qs exceeding 5 is indicative of the conservative nature of the SQGs used to derive the consensus-based PECs and why mean PEC-Q of greater than 1.0 does not mean that toxicity in such sediments is more probable than not.

The greatest value of PEC-Qs is to provide a common basis for comparing the potential for different water bodies at a particular site to pose a potential risk to benthic macroinvertebrates. Sediment with higher mean PEC-Qs would be expected to have a greater potential to pose a risk to benthic macroinvertebrates than sediments with a lower mean PEC-Q. The trends in PEC-Qs in the Facility Area drainage features and hydraulically connected water bodies are discussed in Section 6.1.1.

5.2.1.2 Surface Water

Evaluation of surface water chemistry is performed by comparing dissolved chemical concentrations in surface water to acute and chronic general use water quality standards for protection of aquatic organisms developed by IEPA and presented in Subpart B, 35 Illinois Administrative Code (IAC) Part 302.208. Many of the surface water samples were collected in drainage features which are ephemeral in nature, including the Facility Area ditches, Rose Creek and the Rose Creek Outfall. Surface water samples from these areas were collected from very shallow, isolated and stagnant pools of water, many of which were found to hold no standing water at other parts of the year. Due to their ephemeral natures, COPEC concentrations in water within the Facility Area ditches and Rose Creek are not relevant to these standards. However, all surface water data collected from the Site was compared to these standards to provide a conservative evaluation of potential risks to aquatic life and to provide an understanding of the spatial extent and concentration trends of smelter-related COPECs within the aquatic features on and downgradient of the Facility Area.

For the metals that have water quality based standards dependent upon hardness, the chronic water quality standard was calculated using the hardness of the water body at the time the metals sample was collected. Comparison to the acute standard (AS) values is most applicable to single grab sample results. The acute and chronic aquatic life standards in 35 IAC 302.208(f) are identical to data presented by USEPA within the National Recommended Water Quality Criteria: 2002 document (USEPA, 2002) for protection of aquatic life.

The trends in surface water quality criteria exceedances, which in turn would suggest a lower or higher potential for aquatic life impacts in the Facility Area drainages and hydraulically connected water bodies are discussed in Section 6.1.1.

5.2.2 Bioassays

Whole sediment toxicity tests (or bioassays) are used to directly evaluate the bioavailability and toxicity of chemicals and other stressors in sediment to selected test organisms (EPA, 1997). Benthic organisms were exposed to Site sediment in order to evaluate the effects of the sediment on the survival and growth of these organisms. As described in EPA (2000), the performance of bioassay test organisms in the negative (laboratory) control is used to judge the acceptability of the bioassay, and a reference sediment is used to evaluate performance of the organisms in the investigative sediments. Testing of a reference sediment provides a site-specific basis for evaluating toxicity. If survival and/or growth in site sediments are significantly different from the reference sediment, then the site sediments are general considered to have the potential to pose toxicity to benthic macroinvertebrates. Testing of the negative control is used as a measure of test acceptability, evidence of test organism health, and a basis for interpreting data obtained from the test sediments. If the organisms in the negative control do not meet performance criteria (i.e., having at least 70% survival in the control), the results of the investigative sediments are considered questionable because it suggests that the test organisms may not have been healthy or that some aspect of the test conditions in the laboratory was faulty. If survival is low in the reference sediments, that often indicates that some stressor other than the stressor being investigate at a site may be present in native sediments and be responsible for any observed mortality in test sediments.

For the whole sediment bioassays described herein, one of the field samples, CT-SD-01, was originally designated as a reference location, and is identified as such in the test report. Sediment chemistry from this location suggests that even though this sample was collected from upstream of the Facility Area, it contains elevated concentrations of some COPECs. If the COPECs present in the sample are not related to the Site, then the reference sediments are representative of background conditions and are appropriate to use as a reference.

The results of the benthic bioassays are summarized in Table 5-3, which also presents a description of the test sediments. The results of the bioassay evaluation, including a discussion on the potential for adverse effects on benthic organisms, are provided in Section 6.1.2.

5.2.3 Tissue Studies

The ecological investigation included collection of aquatic macroinvertebrates and wetland plants for analysis of body burdens of specific heavy metals. The presence of COPECs in tissue may be evidence of exposure to bioavailable Site-related COPECs in sediments. However, it may also simply be evidence of exposure to background concentrations of metals. Moreover, the mere detection of COPECs in tissue does not indicate that a risk is present. To evaluate whether tissue concentrations have the potential to pose a risk, tissue concentrations are compared to tissue effects concentrations available in the literature. Sources of tissue residue effect data include:

- U.S. Army Corps of Engineers/U.S. Environmental Protection Agency Environmental Residue-Effects Database (ERED). http://el.erdc.usace.army.mil/ered/
- Trace Elements in Soils and Plants. Kabata-Pendias and Pendias (1992).

The ERED database is a compilation of data, taken from the literature, where biological effects (e.g., reduced survival, growth, etc.) and tissue chemical concentrations were simultaneously measured in the same organism. The database contains information on a broad range of biological effects caused by the presence of a particular chemical in the tissue of an organism, from the induction of particular enzymes or enzyme systems to whole-organism effects on survival, growth, or reproduction. Currently, the database is limited to those instances where biological effects observed in an organism are linked to a specific chemical within its tissues. The ERED database was searched for COPEC effects on benthic invertebrates, focusing on whole body residues for juveniles and adults. Both no effect and effect residue values were selected from the ERED database based on the similarity of the test species and the target species (i.e., benthic macroinvertebrates) and based on the endpoints of survival, mortality, growth or The no effect residue value is the highest no observable effect concentration (NOED) (but not exceeding an effect dose) and the effect residue value is the lowest observable effect concentration dose (LOED) or the effective dose to 20% or less of the test species (ED-20). The database search results for benthic organisms are summarized in Table 6-3. The complete database search results are provided in Attachment E.

For plants, only about ten trace elements are known to be essential for all plants. Ranges of trace element concentrations and classification of their concentrations in mature leaf

tissue were obtained from Kabata-Pendias and Pendias (1992). Classifications include deficient, sufficient or normal, excessive or toxic, and tolerable in agronomic crops. Plant tissue data collected at the Site were compared to these tissue concentration ranges (Table 5-5).

The results of the tissue comparison, including a discussion of the potential for adverse effects on benthic organisms and plants, are provided in Section 6.1.3.

5.2.4 Community Studies

Population/community evaluations, or biological field surveys, are the most direct and Site-specific way of evaluating the potential for adverse ecological effects because they are based on the organisms present at a site and are integrate all potential pathways of exposure (direct contact and ingestion of food, where applicable) and account for any factors that may mitigate or enhance the potential toxicity of the chemicals being investigated. Given the importance and relevance of community studies, both the benthic macroinvertebrate and plant communities in the vicinity of the Site were evaluated.

5.2.4.1 Macroinvertebrates

The benthic macroinvertebrate family-level data collected from the Site provide a direct measure of the health of the benthic communities at the investigated locations. The taxa lists were developed based on qualitative sampling, with a frequency of occurrence estimated for the sampled taxa at the time of collection. This information is appropriate for developing semi-quantitative assessments of the benthic communities. Note that the lack of flow and ephemeral nature of the waterways in the Site area restricts the benthic community evaluation to one only those portions of the Facility Area ditches and surrounding waterways where water was present. The evaluation of the indices calculated for this Site in relation to indices for other aquatic habitats provides a conservative evaluation of potential aquatic life risks.

NRC developed Macroinvertebrate Biotic Index (MBI) values for the sampled locations associated with the Facility Area using a system similar to that used by IEPA. IEPA uses an MBI metric as a measure of organic, oxygen-depriving pollution in stream environments. The IEPA has used the MBI for stream assessments since 1983 (Water Monitoring Strategy 2002-2006, August 2002). In utilizing an MBI, the IEPA applies the Hilsenhoff Biotic Index (HBI, Hilsenhoff, 1982, 1987, 1988) which has been refined for use on the taxonomic family level. This procedure, developed by Hilsenhoff (1982, 1988) for Wisconsin streams, is a semi-quantitative assessment of organic, oxygen-depleting pollution of flowing waters. The HBI system assigns a tolerance value (of low oxygen and high organic waste levels) to aquatic arthropod species found in flowing waters. A higher HBI value, on a scale of 0 to 10, indicates a higher tolerance of low dissolved oxygen and high organic pollution conditions.

Implementing the HBI system initially required counting organisms to a 100-count, a semi-quantitative analysis. The HBI count has since been modified to count a maximum of ten organisms of each encountered taxon. This approach limits bias due to dominance effects of one or two species in a sample (Hilsenhoff, 1998). Using the maximum tencount per taxon, NRC developed MBI values for all of the benthic sampling locations associated with the Site, including East Ditch # 2, which is based on a very limited sampling effort as the location became desiccated before a full sampling effort could be performed (Table 5-7). The MBI was the only semi-quantitative metric developed for the benthic community analysis. The MBI values developed for the Site can be used to compare the sampling locations with each other, but their use is somewhat limited in that the MBI was developed as a measure of benthic community response to oxygen-depleting organic wastes (e.g., high biochemical oxygen demand materials) in flowing waters. Table 5-7 also shows the results of applying the MBI tolerance values for aquatic macroinvertebrate families based solely on organism presence. This approach is a qualitative assessment, resulting in Tolerance Biotic Index (TBI) values, used by the Wisconsin Department of Natural Resources (Lillie and Schlesser, 1994). The TBI is the average tolerance value for the taxa-assigned tolerance values in a sample. The MBI (IEPA, 2002) and TBI (Lillie and Schlesser, 1994) are calculated as follows:

$$MBI = \sum n_i t_i / N$$

Where:

ni = number of individuals in each listed taxo Ti = tolerance rating for each listed taxon N = total number of listed organisms counted

 $TBI = = \sum t_i / T$

Where:

Ti = tolerance value for each listed taxon T = number of listed taxa in the sample

Other qualitative metrics were also applied to the benthic community data including taxa richness (number of identified taxa in a sample), Community Similarity Index, Jaccard's Coefficient of Community, and Community Loss Index (CLI). The Community Similarity (S) Index (EPA 1990) is used to determine whether shifts in community assemblages have occurred along a stream gradient or above and below a potential source of a stressor. It is expressed as a percentage. The higher the percentage Index of Similarity value, the greater the similarity between the benthic community at the reference site and the study site. The Jaccard Coefficient of Community (EPA 1990) measures the degree of similarity in taxonomic composition between two stations in terms of taxa presence or absence and discriminates between highly similar collections. Coefficient values, ranging from 0 to 1.0, increase as the degree of similarity with the reference station increases. The CLI is a measure of the differences of taxa occurring in the benthic communities in a waterway from a reference condition, typically an upstream location. A CLI value of zero indicates no loss of taxa in the downstream benthic

community compared to that of the reference location. The upper end of the CLI range is open-ended (infinity), indicating complete loss of common taxa between the sampled benthic community and the reference community. These coefficients are calculated as follows:

Jaccard's Coefficient = C / A+B-CCommunity Similarity Index (S) = 2C / (A+B)CLI = (A-C)/B

Where:

A = number of taxa in sample 1 or reference station.

B = number of taxa in sample 2 or comparison station

C = number of taxa common to both samples

The community assessment indices and equations are presented in Table 5-6 and Table 5-7 and in Attachment C. A discussion on the potential for adverse effects on the benthic community, based on these indices, is provided in Section 6.1.4.2.

5.2.4.2 Wetland Plant Community Study

The Floristic Quality Assessment Index (FQAI) is a vegetative community index based on the method developed for the Chicago region by Wilhelm and Ladd (1988). This index is capable of measuring ecosystem condition because it assigns a repeatable and quantitative value to vegetation community composition (EPA, 2002a). Two NRC scientists completed an inventory of the plant species present within each releve plot and assigned appropriate coefficient of conservatism (CC) to each species for purposes of developing the FQAI. Individual CC values were taken from Taft and others (1997), which provide values that more adequately reflect species characteristics outside the Chicago Region. The density and percent cover for each dominant species was also recorded for each releve plot. For woody and some larger herbaceous species, these measurements were taken directly from the 100 m² plots. However, to develop estimates for smaller or more abundant herbaceous plants (e.g., Amarathus retroflexus), one or more 1m x 1m nested quadrats were sampled in "average" conditions within each releve.

A FQAI for each sample location was developed using the formula:

Native Floristic Quality Index (FQI) = Mean C(\sqrt{N})

Where:

Mean C = Σ Coefficients of CC/N

CC = coefficients of conservatism for individual species

N = native species richness.

Old American Zinc Plant Site Baseline Ecological Risk Assessment Revision: 0 August 2008

Total mean C and a total FQI score was also developed for each sample location using total species richness (native plus non-native species), where non-native species were assigned CC values of zero. Theses measure often better reflects the actual integrity of a site than simply using native species for the FQAI analysis (Taft and others 2006). The native species richness for each community was also calculated by dividing the number of native species by the total number species within each sample (Table 5-8 and Attachment D). In general, sites with an FQI value greater than 35 are at least regionally noteworthy natural areas. If the mean C is 3.5 or higher and/or the FQI registers in the middle thirties or higher, it is relatively certain that there is significant native character at a site to be important in terms of a regional natural area perspective.

The field survey data was used to develop a FQAI for each sample location. This community assessment index is used to evaluate the results of the plant community study; a discussion on the potential for adverse effects on the wetland plant community is provided in Section 6.1.4.2.

6.0 RISK CHARACTERIZATION

Risk characterization (Step 7) is the final step of the BERA process and includes two major components: risk estimation and risk description. Risk characterization combines the results of the studies performed to produce an estimate of the potential ecological risk and describe that potential risk in terms of extent, whether potential risk is expected to change in the future, how long might elevated concentrations of COPECs are likely to remain, and whether natural recovery is likely to occur if no action is taken.

6.1 RISK ESTIMATION

The risk estimation section describes how the lines of evidence that comprise the sediment Triad approach (i.e., sediment chemistry, whole sediment toxicity test/benthic invertebrate tissue measurement, community survey) are integrated to draw conclusions about potential risk. The lines of evidence used in this BERA to characterize potential risk to aquatic biota:

- Comparing measured COPEC concentrations in sediment and surface water to generic (not Site-specific) and conservative screening levels;
- Comparing results of whole sediment toxicity tests of Site sediments to reference sediments;
- Comparing COPEC concentrations in benthic macroinvertebrate tissue to COPEC concentrations in tissues from a reference location and to tissue concentrations and to allowable tissue benchmarks derived from the literature; and,
- Comparing the benthic invertebrate and wetland plant communities potentially affected by Site-related COPECs to benthic invertebrate and wetland plant communities at an unaffected reference location.

6.1.1 Sediment and Surface Water Chemistry

Sediment

The sediment chemistry data at each sample location has been assessed through the use of the mean PEC-Q, which is a conservative measure of the potential for COPECs in sediment to pose a risk to benthic macroinvertebrates (Table 6-1; Attachment F). The trends in PEC-Qs, which in turn would suggest a lower or higher potential for benthic community impacts in the Facility Area drainage features and hydraulically connected water bodies, are discussed in this subsection. As previously discussed, the mean PEC-Q is best used to evaluate the relative potential of sediments in different portions of the Site water bodies to pose a potential risk. Comparisons of mean PEC-Qs from different sample locations from the same site allows for an assessment in overall changes or trends in potential sediment toxicity. As discussed above, mean PEC-Qs cannot be used to

determine whether a particular sediment is toxic or not, s described by MacDonald *et al.* 2000a and Ingersoll *et al.* (2000). Evidence of PEC-Qs not being predictive is the finding of several reference sediment samples with PEC-Qs that would suggest 100 percent mortality of the macroinvertebrate fauna even though direct observation of these locations indicates the presence of viable populations of macroinvertebrates.

The mean PEC-Q for the drainage ditches within the Facility Area range from 2.6 in East Ditch #2 (SD-02) to 72.4 in West Ditch #1 (SD-25) (Table 6-1; Figure 6). The highest mean PEC-Q within Rose Creek was adjacent to the Facility Area at SD-08 (32.2) and the lowest mean PEC-Q was downstream of the Facility Area at SD-12 (2.4). The primary COPECs contributing to the elevated mean PEC-Q were cadmium, lead and zinc. Silver and mercury are not included in the mean PEC-Q, though concentrations of these metals had high individual PEC-Q at several drainage ditch locations.

Upstream of the Facility Area, the mean PEC-Q in Rose Creek ranged from 1.3 to 4.1, with cadmium, lead, zinc and mercury having high individual PEC-Q in several upstream samples suggesting that the area-wide concentration of several COPECs is elevated due to numerous sources and the Facility Area is not the only contributor.

At the Rose Creek Outfall, mean PEC-Q values ranged from 0.24 at SD-16 to 52.2 at TRC2-S. Transect sample TRC2-S was collected within the engineered drainage system downstream of the outfall; however, elevated mean PEC-Q values (4.97 – 13.86) were also calculated for the upstream sample (SD-51) within this engineered drainage system. Arsenic, cadmium, copper, lead, mercury, silver, and zinc had high individual PEC-Q at all sampling depths (0-6", 8-10", 12-14") at TRC2-S, with the highest mean PEC-Q at the intermediate depth interval. These same COPECs had high individual PEC-Q in the upstream sample (SD-51) within the engineered drainage system, suggesting that another source is contributing to the contamination within this system. Sample TRC2-S1, collected downstream of the outfall before reaching the engineered drainage system, had a mean PEC-Q of 15.2, which is comparable to the PEC-Q values in the engineered drainage system upstream sample (SD-51). Cadmium, lead, silver, and zinc had high individual PEC-Q in transect sample TRC-S1; just as high individual PEC-Q were found for these metals in upstream sample SD-51.

Remaining samples collected within the Rose Creek outfall area (SD-14 through SD-18) had a maximum mean PEC-Q of 1.8. This value is similar to the PEC-Q values for other watershed reference sample (e.g., SD-50 in Old Cahokia Creek, and transect sample TRC-3-S). Reference samples for this area had mean PEC-Q ranging from 1.2 to 3.0, with cadmium and zinc as the primary contaminants. The Rose Creek outfall is also ephemeral, though it drains into the larger Old Cahokia wetland complex.

Many of the transect samples in the western portion of the Old Cahokia Watershed of the wetland complex were collected within open water features. A review of historic aerial photographs shows that the water bodies are borrow pits, probably dug to provide cover

for the landfill. Samples collected within the impoundments had low mean PEC-Q (0.03 to 0.83). These samples are not considered to be representative of background levels within the wetland complex because the areas were excavated. The bottom sediments in the impoundments would be characteristic of deeper soils within this area. Furthermore, they tend to be more hydraulically isolated from other surface water drainage features and associated wetlands, and thus not as prone to influences from other sources of heavy metals within the vicinity of the Site.

At the West Ditch Outfall, the mean PEC-Q ranged from 0.64 at SD-33 to 34.9 at SD-34. Cadmium and zinc had the highest individual PEC-Q while lead and copper also had elevated individual PEC-Q in several samples from the West Ditch outfall area. Of note, the arsenic concentrations in the West Ditch Outfall samples ranged from 4.6 mg/kg to 25 mg/kg, which is similar to the State of Illinois (35 IAC Part 742) background concentration for arsenic in soil (13 mg/kg) and is considerably less than the arsenic concentrations (8.5 to 130 mg/kg) measured in the drainage ditches on the Facility Area. Other sources of heavy metals have impacted the wetland complex around the West Ditch Outfall, including illegal dumping, automobile emissions, roadway runoff, coalfired power plants, and spent shot from waterfowl hunting. Reference samples were collected throughout the wetland complex, from areas considered to be upgradient or a considerable distance from the outfall so as to not be hydraulically impacted by the outfall. The general flow of water through this wetlands complex is from the northeast to the southwest. The locations considered to represent background include transect samples upgradient (north) of the outfall (TWD-1N, -1S, and -1C), transect locations on the opposite side of the open water from the outfall area (TWD-2N), and the transect sample south of the outfall but not hydraulically impacted by the outfall (TWD-3S, -3C, 3N). The mean PEC-Q values from the background locations ranged from 0.42 to 5.4, with cadmium, lead, and zinc being the primary metals contributing to the PEC-Q. sample location (TWD1-S) with the highest mean PEC-Q was located upgradient (north) of the outfall. Thus, locations with PEC-Q up to 5.4 may be representative of ambient conditions within the wetland complex in the vicinity of the West Ditch outfall. The ten locations within the area that exceeded this PEC-Q were in close proximity of the West Ditch Outfall drainage swale and include SD-34, SD-38, SD-40, SD-32, SD-45, SD-46, SD-47, SD-48, and TWD-02-C-06, and TWD-02-S-06 (Table 6-1).

Within Schoenberger Creek, the mean PEC-Q ranged from 0.63 at SD-36 to 2.1 at SD-52. The mean PEC-Q in the sample collected south of Collinsville Road (SD-22) was 1.3, which is higher than the mean PEC-Q for the samples collected near where the engineered drainage system discharges to the creek. The highest mean PEC-Q in Schoenberger Creek was measured furthest downstream at a location downgradient of the west boundary of the Old Cahokia Watershed, within the channelized and bermed Schoenberger Creek. The COPECs with individual PEC-Q values greater than 0.5 were chromium, lead, and zinc. The highest individual PEC-Q for chromium was 0.63 in the samples from the Facility Area drainage ditches, while the individual PEC-Q for chromium in Schoenberger Creek ranged from 0.48 at SD-36 to 5.73 at SD-52. The elevated chromium in Schoenberger Creek sediments suggests that some other source is

contributing chromium to Schoenberger Creek. The presence of COPECs in upstream samples suggests that impacts to Schoenberger Creek are not related to historic smelter operation.

Sediment Summary

The sediment data suggest that surface water flow from the Facility Area may have contributed to COPEC concentrations in downgradient aquatic drainage features and water bodies. The elevated mean PEC-Q suggest that the aquatic ecosystem within Rose Creek, within close proximity to the Rose Creek Outfall, and in close proximity to the West Ditch Outfall may have been impacted by smelter-related COPECs, though as described above, the value of a PEC-Q alone cannot be used to determine whether a potential risk is present or not. Other Site-specific lines of evidence are needed to make that assessment. Moreover, based upon the presence of the metals and elevated PEC-Qs in background locations not affected by the Site, it appears that other sources such as illegal dumping, automobile emissions, roadway runoff, coal-fired power plants, and spent shot from waterfowl hunting have contributed to COPEC concentrations in sediments throughout the area.

Surface Water

Dissolved surface water concentrations were compared to acute and chronic surface water quality standards identified from the IEPA (Table 6-2). This comparison was done to assess potential impacts to the aquatic community associated with surface water and to evaluate trends in surface water chemistry in the Facility Area drainage features and downstream surface water features. Many of the surface water samples were collected in drainage features which are ephemeral in nature, including the Facility Area ditches, Rose Creek and the Rose Creek Outfall. Surface water samples from these areas were collected from very shallow, isolated and stagnant pools of water, many of which were found to hold no standing water during other parts of the year. For this reason, comparison of the surface water data to Illinois General Use Water Quality Standards is a very conservative evaluation of potential for aquatic impacts as these standards are not relevant to upland drainage ditches.

As the ditches and Rose Creek which carry surface water runoff are ephemeral, surface water samples were collected only at locations that possessed standing water. Surface water concentrations of zinc in the West Ditch #1 (SW-24) and cadmium and zinc in the West Ditch #2 (SW07) exceeded chronic and acute water quality criteria. The lead concentration in SW-7, the cadmium concentration in SW-24, and the zinc concentration in SW-12 and SW-43 exceeded chronic but not acute criteria. Within Rose Creek (SW-10, SW-11, SW-13, SW-41, and SW-44), concentrations of zinc and/or cadmium exceeded acute criteria. At the Rose Creek Outfall into the Old Cahokia Creek watershed (SW-17), only the zinc concentration slightly exceeded the acute standard (Table 6-2a). No dissolved concentrations were measured above acute and chronic standards at the West Ditch #1 outfall to the Old Cahokia Creek Watershed (SW-34) or within the Old

Cahokia Creek watershed/wetland complex. The chronic surface water criteria for selenium was slightly exceeded in one sample from Schoenberger Creek (SW-36), though selenium was not detected in any other sample from the creek and the detected concentration was below the detection limit for this analyte.

Based on the surface water chemistry study, potential risks to aquatic receptors from cadmium and zinc in ephemeral drainage ditches on the west side of the Facility Area and within the ephemeral Rose Creek and its outfall are possible. However, due to their ephemeral nature, comparison of COPC concentrations in surface water within the Facility Area ditches and Rose Creek to these standards is not appropriate. No exceedances of the acute General Use standards were found in the permanent water features in the Old Cahokia Creek wetland complex or in Schoenberger Creek.

6.1.2 Bioassays

Seven sediment samples and a control sediment sample were used in the 10 day whole sediment toxicity tests conducted using the freshwater midge, *C. tentans*. The laboratory negative control survival was 87.5%, which meets the test requirement of having at least 70% survival in the control. However, the high mortality in sediment samples collected from on and adjacent to the Site, including the reference sample, and over a range of COPEC concentrations, suggests the presence of one or more stressors in sediments, not related to the Site, caused the mortality. While elevated metals in the reference sediments (location SD-01, Table 5-1) might suggest the location is not appropriate as a reference location, it was identified as being upstream of the Site at the start of the BERA, other indigenous species, mostly aquatic worms, were found in the test sediments at the start and end of the study period, and as described below, it contained a benthic community consistent with that found in other sediments not impacted by the Facility Area.

As previously presented in Section 5.1.2, while the presence of Site-related COPECs in sediments cannot be ruled out as a contributing factor to the observed mortality, the following observations suggest that other factors were also responsible:

- 100% mortality was observed in sediments from location SD-36 in Schoenberger Creek which had a mean PEC-Q of 0.63 (less than 1.0) (Table 6-4). Given the conservative nature of the derivation of the PEC-Q, if Site-related metals were the only stressor present in sediments, little if any mortality would have been expected at this location;
- No pattern of mortality with respect to metal concentrations was observed; mortality was observed at zinc concentrations ranging from 750 mg/kg to 35,000 mg/kg; lead ranging from 70 mg/kg to 3300 mg/kg; and cadmium ranging from 19 mg/kg to 460 mg/kg;

- No pattern of mortality with respect to location was observed, the same results
 were obtained from all samples regardless of their location on the Site and the
 concentrations of COPECs within the sediments from these locations;
- Nearly all of the mortality occurred within the first 24 hours of the test while native organisms contained in the sampled sediment were noted to still be alive at the termination of the test; and,
- Ammonia in the overlying water within the treatments varied by up to 426% over the course of the test duration. This is far greater that the maximum recommended amount of variation of 50%. In addition, the startup and end ammonia concentrations were higher in the test sediments (1.0 to 5.8 mg/L) than in the lab control (0.72 mg/L), except for the Day 0 ammonia concentration was lower at SD-13 (0.42 mg/L).

Given the inconsistencies inherent in the whole sediment bioassay results, they cannot be used to draw conclusions about potential risks posed by COPECs in sediment to benthic macroinvertebrates. Fortunately, two other Site-specific lines of evidence are available (tissue analysis and benthic community analysis) and are described below.

6.1.3 Tissue Analysis

Macro-invertebrate Tissue

Potential risk to macro-invertebrate species inhabiting the drainage features and creeks was assessed by comparing COPEC concentrations measured in benthic macroinvertebrate tissue to tissue residue effect concentrations presented in peer reviewed reports (Table 6-3). Concentrations of zinc in benthic macroinvertebrate tissue samples collected from Rose Creek (SD-08) and at the West Ditch Outfall into the Old Cahokia Creek wetland complex (SD-34) exceeded the lowest observable effect concentration (LOEC); no other COPECs exceeded the No Observed Effects Concentrations (NOEC) or LOEC tissue residue levels indicating that most COPECs in macroinvertebrates at most sampled locations are not expected to pose a potential risk. This observation is consistent with the observation of native species in test sediments at the start and conclusion of the whole sediment bioassays. Tissue residue effect concentrations were not available for barium, though barium tissue concentrations were one to three orders of magnitude less than sediment concentrations.

Sample Location SD-08 is located in Rose Creek, just west of the confluence with East Ditch #1. The next downstream sample with standing water at the time of sampling (SD-13) was about 5800 ft downstream of SD-08 and is located east of Collinsville Road and east of the Rose Creek outfall into the Old Cahokia Creek wetland complex. The next upstream sample in the East Ditch (SD-06) is about 400 feet northeast of SD-08, south of East Ditch #2 confluence. Tissue concentrations were not elevated at the sample locations upstream (SD-06) or downstream (SD-13) of SD-08.

The zinc concentration in tissue at SD-34 was only slightly higher than the tissue LOEC. Sample SD-34 is at the edge of the open pond in Old Cahokia Creek Watershed, downstream of the West Ditch #1 outfall. Tissue concentrations of barium and zinc were elevated in relation to the furthest upstream sample in East Ditch #1, though zinc concentrations were lower than measured in tissue collected at SD-08. Of note is the presence of duck blinds located along the edge of the open water, just east and west of Sample Location of SW/SD-34 at the West Ditch Outfall. The ban on the use of lead shot for hunting waterfowl became nationwide in 1991; instead, non-toxic shot was approved for waterfowl hunting. Nontoxic shot is defined as any shot type that does not cause sickness and death when ingested by migratory birds. However, certain brands of non-toxic shot are approved for coatings of copper, nickel, tin, zinc, zinc chloride, and zinc chrome (*Nontoxic Shot Regulations for Hunting Waterfowl and Coots in the U.S.*, January 2006. http://www.fws.gov/migratorybirds/issues/nontoxic_shot/nontoxic.htm). Thus, the elevated zinc levels found in benthic macroinvertebrates may be attributed to waterfowl hunting within the Old Cahokia Creek watershed wetland complex.

Based on the line of evidence developed by comparing the COPEC concentrations in macroinvertebrate tissues to literature derived allowable concentrations, most COPECs at most locations do not appear to pose a potential risk to macroinvertebrates, despite PECQs substantially greater than 1.0 or even 5.0 at several of these locations. The absence of toxicity is likely due to the apparently low bioavailability of metals in sediments in the vicinity of the Site (see discussion in Section 5.1.3.1). Indeed, the only COPEC the exceeded its respective allowable concentration in macroinvertebrates is zinc at two locations (SD-08 and SD-34) indicating that any potential adverse effects to macroinvertebrates appear to limited in extent and localized.

Plant Tissue

Potential risks to the plant community within the Old Cahokia Creek wetland complex was evaluated at the two discharge points of the two drainages hydraulically connected to the Facility Area: Rose Creek and West Ditch #1 outfalls.

At the Rose Creek outfall, concentrations of lead, selenium, and zinc in plants were detected at concentrations considered to be sufficient or normal (Table 5-5). The tissue concentration of cadmium was above sufficient levels but was below levels considered to be excessive or toxic.

At the West Ditch #1 outfall, concentrations of lead and selenium in herbaceous tissue samples were detected at concentrations considered to be sufficient or normal (Table 5-5). The tissue concentration of cadmium was above sufficient levels but was below levels considered to be excessive or toxic. The zinc concentration at the West Ditch outfall was higher than in the reference sample or at the Rose Creek outfall, falling within the range considered being excessive. However, the measured tissue concentration of zinc at the West Ditch outfall is considered to be tolerable in agronomic crops. Some plants have the ability to hyperaccumulate zinc in their shoots. Given the high

concentration of zinc in sediments, the lower concentrations of zinc in tissue suggest that much of it is not biologically available and hyperaccumulation is not occurring, particularly given that the plant tissue sampling was highly biased towards individual specimens exhibiting overt signs of environmental stress.

Based on the plant tissue results, no significant risks are present to the plant community within the Old Cahokia wetland complex.

6.1.4 Community Studies

Community studies are another Site-specific line of evidence used to evaluate whether the aquatic ecosystem is affected by smelter-related COPECs. The potential for risk is evaluated by comparing the benthic invertebrate and wetland plant communities in the aquatic environments on and downgradient of the Facility Area with benthic invertebrate and wetland plant communities at reference locations.

6.1.4.1 Macroinvertebrates

The results of both the MBI and the TBI indices suggest that most of the area waterways are oxygen-depleted. It should be noted that there are limitations to the use of the aquatic macroinvertebrate community results presented for this Site. Not all of the aquatic macroinvertebrate families identified in Table 5-6 are assigned tolerance values. Although some of these organisms form an appreciable part of the aquatic macroinvertebrate community, they are not considered in the assessment process because the species of these families subsist, and sometimes thrive, regardless of the oxygen-depleting status of the habitat. In addition, the lack of flow and continuity of the waterways in the Site area limits the application of the benthic community indices to the evaluation of the Facility Area ditches and surrounding waters. The evaluation of the indices calculated for this Site in relation to indices for other aquatic habitats provides a conservative evaluation of potential aquatic life risks.

While the taxa richness values (5 to 18) would be low for minimally stressed waterways (Table 5-6), the taxa identified in the benthic communities on the Facility Area and surrounding drainage features generally reflect stressed conditions, especially limitations due to low dissolved oxygen. Of the 30 taxa identified, greater than half (the three snail families, the nine bug families, the three beetle families, and the mosquito family) represent species that are considered air breathers, and are not dependent on the dissolved oxygen concentrations of the waterways. When looking at the set of available metrics presented in Table 5-6, locations SD-02, SD-34 and possibly SD-13 appear to differ from the others. Given that only one sweep was conducted at SD-02, the benthic community analysis cannot be used to evaluate the health of the benthic community at that location. For the remaining locations, the community appears to be stressed but not by metals. Sample SD-13 was collected in Rose Creek and Sample SD-34 was collected at the West Ditch #1 Outfall. Of all sample locations, the lowest MBI and TBI metrics were found at

SD-13, which suggests less pollution than at the other sampling locations. The surface water collected at SW-34 had the lowest dissolved oxygen reading (Table 4-2) of all surface water sample locations.

Applying the Community Similarity Index (CSI) and Jaccard's Coefficient of Community to the Site benthic data (Table 5-7) greater similarity, as calculated by both indices, generally occurs among those benthic communities where the most taxa (13 to 18) were identified. This suggests that the commonality of the locations is not so much a distinction of which taxa the areas will support, but rather whether the locations will support any benthic macroinvertebrate taxa. Benthic macroinvertebrates found at a sampling location are likely those taxa common to the benthic communities of the area. The low similarity values occur because few taxa were found at these sampling locations.

Community loss index (CLI) values were developed for those benthic communities that can be considered to fall into a geographic continuum of a waterway. Because of the intermittent nature of Rose Creek and West Ditch # 1, there are two separate flow patterns that were assessed for the CLI metric: 1) East Ditch to upper Rose Creek and 2) Schoenberger Creek.

For East Ditch No. 1 to upper Rose Creek, the CLI values are:

East Ditch 1 at origin \rightarrow East Ditch 1 at mouth of East Ditch 2, CLI = 0.31 East Ditch 1 at mouth of East Ditch 2 \rightarrow Rose Creek at mouth of East Ditch 1, CLI = 0.31

For the Schoenberger Creek (S Cr) system, the CLI values are:

S Cr above Collinsville Rd \rightarrow S Cr at mouth of Engineered Ditch, CLI = 0.28 S Cr at mouth of Engineered Ditch \rightarrow S Cr below Engineered Ditch, CLI = 0.54

These values suggest little loss in benthic community diversity in the ditches and creeks draining the Facility Area. It should be noted that the upstream, or reference, location on East Ditch No. 1 lies on the Facility Area, and may be affected by former operations at the Facility Area. In addition, culverts connecting East Ditch #1 and East Ditch #2 were observed to be heavily clogged with sediment, effectively isolating the two ditches except under high flow conditions. Also, the upstream Schoenberger Creek location may be subject to ecological stresses not related to the former smelter in that it is situated approximately 1,000 feet downstream of a railroad yard.

In summary, the macroinvertebrate community indices suggest that most of the area waterways are generally stressed, likely due to low dissolved oxygen. Regardless, most of the benthic community metrics suggest little loss in benthic community diversity in the ditches and creeks draining the Facility Area, with the possible exception of SD-34 which had a substantially lower number of taxa and organisms than any other location.

6.1.4.2 Wetland Plants

In general, based on the wetland vegetation survey, all of the plant communities surveyed are dominated by disturbance tolerant or ruderal (weedy and adventive) species characteristic of highly altered natural environments. The wetland vegetation community assessment is provided in Attachment D. Total FQI scores for the three releve plots at the West Ditch Outfall location within the Old Cahokia Watershed ranged from 4.62 to 6.93, with slightly higher FQI scores closer to the stormwater outfall (possibly as a result of microenvironments created by frequent disturbances). Total mean C values (a measure of the native character of the community) ranged from 1.92 to 3.3. If the mean C is 3.5 or higher and/or the FQI registers in the middle thirties or higher, it is relatively certain that there is significant native character at a site to be important in terms of a regional natural area perspective.

The survey area encompasses a rather broad depositional environment that is relatively species poor and in many areas dominated by only a few herbaceous species such as redroot pigweed (Amaranthus retroflexu) and white grass (Leersia virginica) and a sparse cover of common buttonbush (Cephalanthus occidentalis). Overall, native species richness was lower in the West Ditch #1 outfall (66.7 to 76.9 percent) than in the other areas surveyed. Stressed vegetation (chlorosis, malformed growth) appeared to be contained within a relatively distinct line that may potentially correlate to the depositional environment of the stormwater outfall Undisturbed hardwood swamp habitat dominated by mature black willow (Salix nigra) and green ash (Fraxinus pennsylvanica) borders the survey area on the east and west, with shrub-carr and shallow marsh habitat to the north. These higher quality habitats suggest a natural delineation of the extent of the potentially impacted area around the West Ditch Outfall.

Total FQI scores for the Rose Creek Outfall location ranged from 9.0 for the releve plot to 9.2 for the belt transect. Total mean C values ranged from 1.8 for the releve plot to 2.05 for the belt transect. Overall native species richness was about 80% for the community. Vegetation at the belt transect survey location was predominantly a disturbed wet meadow, while the plant community within the releve plot appeared to be trending successionally from a wet meadow-sedge meadow to a hardwood swamp. Beaver activity was evident in the area of the releve plot, which could partially account for the disturbed, scrub-shrub vegetation. Both sample locations are highly disturbed by stormwater flow. Although Rose Creek was dry at the time of the survey, a significant amount of trash, coarse woody debris, and sediment deposition was evident at several locations within the stream channel. Virtually no vegetation was present within the channel, which was scoured to a depth of two to three feet below the surrounding landscape. This stream downcutting has likely altered the hydrology of adjacent wetlands such as the wet meadow sampled within the belt transect, allowing species more characteristic of drier grasslands to successfully invade the plant community. Stressed vegetation (chlorosis) was evident within both sampling locations, although more localized and generally restricted to the southwest corner of the releve plot (closest to the mouth of the stream channel).

Total FQI scores and total mean C values at the Reference Area belt transect were 5.00 and 1.67, respectively, with a native species richness of about 67 percent. In contrast, the Total FQI and native species richness for the plant community were higher for the releve plot in the Reference Area (13 and 88 percent, respectively). The mean C value for the releve plot Reference Area (2.56) was also slightly higher than the belt transect location. The Reference Area is part of a former golf course that has been restored to a large floodplain wetland complex consisting of emergent and wet meadow habitats. No obvious signs of vegetative stress were observed within the Reference Area.

In summary, all of the plant communities surveyed are dominated by disturbance tolerant or ruderal (weedy and adventive) species characteristic of highly altered natural environments. None of the plant communities had mean C values of 3.5 or higher and/or FQI of 35 or higher, which would indicate significant native character. Stressed vegetation (chlorosis, malformed growth) was evident at the Rose Creek Outfall and West Ditch outfall transect locations, but appeared contained within a relatively distinct line that may potentially correlate to the depositional environment of the stormwater outfall.

6.2 UNCERTAINTY ANALYSIS

There are several sources of uncertainties associated with the ecological risk assessment process. The uncertainty analysis addresses the major assumptions that affect the degree of confidence in the estimate of risk. Knowing the uncertainties associated with the risk estimates aids the risk manager in making the Scientific/Management Decision at the end of the ecological risk assessment. General and site-specific uncertainties associated with this BERA include:

- The BERA is based on available data which, based on current practice, are assumed to be representative of Site conditions. As the number of sampling points increase, the uncertainty about the true distributions of values decreases. However, even with a large number of sampling locations, it is impossible to conclude definitively that concentrations above those measured do not exist at the Site.
- Natural and anthropogenic background levels of COPECs are likely present in samples collected from the Site. As such, Site data were compared to COPEC concentrations in sediment, surface water and tissue samples collected from reference areas. Results of this comparison are integrated into the Data Analysis Step and discussed in the Risk Characterization. Because a limited number of reference area samples were collected, the contribution from background and off-Site sources was evaluated by semi-quantitatively comparing investigative results with reference area results. An evaluation of background sediment sample locations indicates elevated levels of cadmium,

lead, and zinc in reference areas. Concentrations of zinc as high as 4600 mg/kg were measured in reference samples from the West Ditch Outfall wetland complex and concentrations of zinc were as high as 3,900 mg/kg in reference samples from Rose Creek. Thus, potential Site-related risks to aquatic receptors are over-estimated because background levels of COPECs are contributing to the potential risk. Anthropogenic sources of metals that may be contributing to the total risk include hunting, illegal dumping, automobile traffic, and power plant emissions. Duck blinds are located along the edge of the open water of the Old Cahokia Wetland Complex, just east and west of the West Ditch #1 outfall. Other duck blinds are present along the open water edge further northeast of the outfall. Active hunting was noted in the watershed complex, east of the sampling activity during the December 2006 sample event. While the use of lead shot has been banned in the state of Illinois since the late 1970s, it is possible that historic shooting activity has contributed to elevated lead concentrations in the sediments of this watershed. In addition, the ban on the use of lead shot for hunting waterfowl became nationwide in 1991; instead, non-toxic shot was approved for waterfowl hunting. Nontoxic shot is defined as any shot type that does not cause sickness and death when ingested by migratory birds. However, certain brands of non-toxic shot are approved for coatings of copper, nickel, tin, zinc, zinc chloride, and zinc chrome (Nontoxic Shot Regulations for 2006. Waterfowl and Coots in the U.S., http://www.fws.gov/migratorybirds/issues/nontoxic shot/nontoxic.htm). Thus. elevated lead and zinc levels may be attributed to waterfowl hunting within the Old Cahokia Creek watershed wetland complex.

In 1984, IEPA removed drums from the LaMear Dump within the Old Cahokia watershed wetland complex. The LaMear property is located within the Old Cahokia Wetland complex just north of Collinsville Road. According microfiche obtained the from the IEPA Bureau of Land, a total of 138 drums containing copper mud, copper scale, waste oils, enamels, solvents, and sludge wastes were illegally dumped on the LaMear property sometime between 1972 and 1975. Remediation of the area was conducted between August 20 and August 30, 1984. A total of 138 barrels were recovered and four inches of soil was removed around the barrels where excess residue had accumulated. Soil and sediment samples collected after the removal contained cadmium at 22.4 mg/kg to 43.6 mg/kg, lead at 124.7 mg/kg to 512 mg/kg, and zinc at 1703 mg/kg to 2341 mg/kg. According to the IEPA, results for soils were "below the level thought to be harmful." Thus, metal concentrations in the Old Cahokia Creek wetland complex in the vicinity of the West Ditch Outfall may partially be attributable to historic illegal dumping.

Coal-fired power plants are a major source of atmospheric mercury; Five coal fired power plants have been identified in the greater metropolitan St. Louis area. Elevated levels of mercury in sediment samples may partially be attributable to power plant emissions.

- Ranges of concentrations of trace elements required by plants are often very close to the content that exerts a harmful influenced on plant metabolism, making it hard to make a clear division between sufficient and excessive quantities of trace elements in plants (Kabata-Pendias and Pendias, 1992). Thus, the potential risks to the plant community at the outfalls may be over or under estimated.
- The mean PEC-Q method was developed to evaluate the predictive ability of PECs to determine the potential toxicity of a mixture of chemicals. The PEC database consists of samples from freshwater ecosystems throughout North America, primarily from the Great Lakes and major tributaries to the Great Lakes containing many types of chemicals, not just metals. Application of PEC to the ephemeral drainages and wetland areas associated with this Site results in an overestimation of potential risk to benthic community. The limited ability of the PEC-Q method to predict toxicity at this Site is demonstrated by mean PEC-Q of up to 5.4 within reference areas of the Old Cahokia Watershed.
- There are limitations to the use of the aquatic macroinvertebrate community results due to the families identified and the ephemeral nature of the water bodies. Not all of the aquatic macroinvertebrate families identified are assigned tolerance values. Although some of these organisms form an appreciable part of the aquatic macroinvertebrate community, they are not considered in the assessment process because the species of these families subsist, and sometimes thrive, regardless of the oxygen-depleting status of the habitat. Many of the aquatic bug and beetle species and some of the aquatic fly larvae families are air breathers, so the waters' dissolved oxygen concentrations will have little or no effect on the health of these species. Fourteen of the 30 identified taxa have species that are air breathers, and thus provide limited information for a biological assessment of the aquatic macroinvertebrate communities. Though it bears mentioning that whether an invertebrate is an air breather or not, may not have any effect on its sensitivity to metal toxicity and, thus, the presence of air breathers in the waterways around the Site may only be an indication of limited dissolved oxygen and not of stress caused by elevated levels of metals.

6.3 RISK DESCRIPTION

The risk description provides information to aid in interpreting the potential risks and, if appropriate and necessary, to identifying concentrations that are protective of the assessment endpoints, or conversely, above which adverse effects may be observed. The risk description also provides information to help the risk manager judge the likelihood and ecological significance of the estimated potential risks. At the completion of the risk characterization, a Scientific Management Decision Point (SMDP) occurs. Decisions are made by the risk manager concerning what future actions, if any, are to be undertaken.

The objective of the BERA was to determine whether smelter-related COPECs have adversely affected the aquatic ecosystems within the ephemeral drainage features draining the Facility Area and aquatic ecosystem in the immediate vicinity of the discharges areas within the Old Cahokia Creek Watershed. To meet this objective, the BERA:

- Evaluated COPECs concentrations in sediment, surface water, and macroinvertebrate and wetland plant tissues; and,
- Assessed the potential for adverse effects to ecological receptors, focusing on exposures to aquatic invertebrate and wetland plant communities, using sediment and surface water sampling, laboratory bioassays, tissue sampling, and community studies;

Generally, more than one line of evidence is used to evaluate whether chemicals from a site are potentially affecting the assessment endpoint(s). Lines of evidence that were used to characterize potential risk in this BERA include:

- Comparing measured COPEC concentrations in sediment and surface water to conservative screening levels;
- Comparing results from whole sediment bioassays conducted with sediment from the Site with bioassays conducted with sediment from a reference location;
- Comparing tissue metals concentrations of benthic macroinvertebrates and plants collected from areas potentially affected by the Facility Area to tissue concentrations from a reference location and to tissue concentrations from the literature that are reported to be allowable toxic; and,
- Comparing the benthic invertebrate and wetland plant communities in the areas potentially affected by the Facility Area to the benthic invertebrate and wetland plant communities at reference locations.

Table 6-4 summarizes the multiple lines of evidence for the 10 ecological sampling locations used to assess potential effects in the aquatic ecosystems within the ephemeral drainage features draining the Facility Area and the aquatic ecosystem in the immediate vicinity of the discharges areas within the Old Cahokia Creek Watershed. As noted above, because of concerns about the reliability of the results of the whole sediment bioassays, those results are not used as a line of evidence in the risk characterization contained in the BERA, though the results of the bioassays are summarized in Table 6-4.

Comparison of the surface water and sediment chemistry data from East Ditch #1 and #2, to conservative benchmarks suggests that potential adverse effects to aquatic organisms

may exist (Table 6-4). However, the benthic community survey shows a similar community throughout the Facility Area ditches that is similar to the community found in Schoenberger Creek which is not affected by releases from the Facility Area. In addition, COPEC concentrations in macroinvertebrate tissues were below NOECs and LOECs suggesting COPEC concentrations were not high enough to pose a potential risk. The absence of a potential risk is supported by the observation of native organisms in sediments during the bioassay. Thus, while comparison of surface water and sediment chemistry to conservative and generic benchmarks suggests potential impacts to the aquatic ecosystem in the East Ditches, all of the Site-specific lines of evidence suggest the absence of an effect related to COPECs, given the current characteristics of the East Ditches. The ditches have been altered to enhance stormwater flow on the Facility Area. Piles of slag and slag-like material are present along the banks of the ditches. Overall, given the physical characteristics and ephemeral conditions of the Facility Area ditches, the aquatic communities would likely change little if the metals were removed from the systems.

As with the East Ditches, comparison of the surface water and sediment chemistry data from Rose Creek to conservative benchmarks suggests that potential adverse effects to aquatic organisms may exist, with greater potential for impact at the location closest to the Facility Area (Table 6-4). This is consistent with the comparison of macroinvertebrate tissue concentrations to allowable benchmarks, which also suggest a potential impact in the upstream Rose Creek location (SD-08) and no impact at the downstream location (SD-13). However, the benthic community metrics suggest the opposite trend, a more diverse and abundant community in the upstream Rose Creek sampling location than at the downstream location. During the whole sediment bioassay tests, native species were also noted in the upstream but not at the downstream location. Overall, the benthic macroinvertebrate community in both Rose Creek sampling locations appears to be similar to that found at other sampling locations in the vicinity of the Site, including the locations on Schoenberger Creek not affected by the Site. Thus, while comparison of surface water and sediment chemistry to conservative and generic benchmarks suggests potential impacts to the aquatic ecosystem in Rose Creek, most of the Site-specific lines of evidence suggest the absence of an effect related to COPECs, given the current characteristics of Rose Creek. Rose Creek is a relatively narrow ephemeral stream that flows along the north side of the Penn Central & Baltimore/Ohio Rail Corridor. Slag and slag-like material are present along the banks where Rose Creek flows through and adjacent to the Facility Area. Given the physical characteristics and ephemeral conditions of Rose Creek, the aquatic communities would likely change little if the metals were removed from the systems.

Some overt effects on plant growth (e.g., chlorosis) were observed at the Rose Creek outfall, though this was localized. Plant tissue concentrations at Rose Creek outfall were below levels that are considered toxic. Nevertheless, impacts to the plant community from smelter-related COPECs on the plant community in the immediate vicinity of the Rose Creek outfall are possible, though the results also suggest that these effects are limited in spatial extent.

As with Rose Creek and the East Ditches, comparison of the surface water and sediment chemistry data from the West Ditch Outfall into the Old Cahokia wetland complex to conservative benchmarks suggests that potential adverse effects to aquatic organisms may exist (Table 6-4). However, unlike for the other two water bodies, the Site-specific lines of evidence also suggest a potential impact to the benthic macroinvertebrate community. The total number of organisms and taxa are lower at this outfall location than at the other sample locations and the macroinvertebrate indices higher, indicating a less healthy community and poorer water quality. In addition, the concentration of zinc in invertebrate tissues is slight greater than the allowable benchmark. Thus, COPECs as this location may be adversely affecting the benthic macroinvertebrate community. Additionally, some overt effects on plant growth (e.g., chlorosis) were observed at this outfall, though this was limited to a very localized areas but is consistent with the concentration of zinc in plant tissues being within the range considered to be excessive or toxic. All other metals were below levels that are considered toxic. evidence suggest that COPECs may be adversely affecting the aquatic ecosystem at the West Ditch outfall, though the results also suggest that these effects are limited in spatial extent.

While the surface water and sediment chemistry suggests some impact to aquatic organisms within Schoenberger Creek (Table 6-4), COPEC concentrations do not appear elevated compared to the reference location in the creek. The benthic community survey shows that the community within the creek is similar to the sampling locations in the reference area as well as to locations in the Facility Area ditches. Native organisms were found in sediments during the whole sediment bioassay and COPECs in benthic macroinvertebrate tissues were below NOECs and LOECs. Thus, there is no evidence that any smelter-related COPECs have impacted Schoenberger Creek.

The BERA has taken the multiple lines of chemistry available at the ten locations discussed above for use and extending the findings to all locations where we only have chemistry. In summary, sediment chemistry data show that surface water flow from the Facility Area has resulted in COPEC migration to some of the down-gradient aquatic habitats within the Old Cahokia Watershed, within the immediate vicinity of the West Ditch and Rose Creek Outfalls, though other anthropogenic sources have also contributed COPECs at these locations. The lines of evidence presented in the BERA suggest that smelter-related COPECs may be affecting the macroinvertebrate community in a localized area downgradient of the West Ditch outfall at the edge of the open water habitat at sample location SD-34. In addition, some evidence suggests that smelterrelated COPECs are affecting wetland plants in localized areas downgradient of the West Ditch and Rose Creek Outfalls. Potential effects to plants are localized and are not affecting the overall plant community; only individual plants in the immediate vicinity of outfalls. In conclusion, with the exception of the localized findings noted above, the BERA has developed no conclusive evidence that the diversity and viability of the aquatic ecosystem in the drainage features draining the Facility Area and the aquatic ecosystem in the immediate vicinity of the discharges areas within the Old Cahokia

Old American Zinc Plant Site Baseline Ecological Risk Assessment Revision: 0 August 2008

Creek Watershed is being adversely affected by COPECs associated with historic smelter activities.

7.0 REFERENCES

American Society for Testing and Materials. 2000. Standard Test Methods for Measuring the Toxicity of Sediment-Associated Contaminants with Fresh Water Invertebrates. ASTM E1706-95b.

Bechtel Jacobs Company LLC. 1998. EBiota Sediment Accumulation Factors for Invertebrates: Review and Recommendations for the Oak Ridge Reservation. Bechtel Jacobs Company LLC, Oak Ridge, Tennessee. BJC/OR-112.

ENTACT, 2006. Support Sampling Plan for the Old American Zinc Plant Site, Fairmont City, Illinois, Revision 2, 71 pp.

Fenneman, N.M., 1910. Physiography of the St. Louis Area, Bulletin No. 12 (Willman, 1975) Illinois State Geological Survey (ISGS), University of Illinois, Urbana, Illinois.

Hilsenhoff, W.L., 1982. Using a Biotic Index to Evaluate Water Quality in Streams, Wisconsin Department of Natural Resources Technical Bulletin No. 132, 22 pp.

Hilsenhoff, W.L., 1987. An Improved Biotic Index of Organic Stream Pollution, *The Great Lakes Entomologist*, 20(1):31-39.

Hilsenhoff, W.L., 1988. Rapid Field Assessment of Organic Pollution with a Family-level Biotic Index, *Journal of the North American Benthological Society*, 7:65-68.

Hilsenhoff, W.L., 1998. A Modification of the Biotic Index of Organic Stream Pollution to Remedy Problems and Permit Its Use throughout the Year, *The Great Lakes Entomologist*, 31(1):1-12.

Illinois Environmental Protection Agency, 2002. *Water Monitoring Strategy 2002-2006*, Publication IEPA/BOW/02-005.

Illinois State Geological Survey (ISGS), March 14, 2003. "Fairmont City Potential Wetland Compensation Site: Hydrogeologic Characterization Report, Collinsville Road, Fairmont City." Prepared for Illinois Department of Transportation, Bureau of Design and Environment, Wetlands Unit.

Ingersoll, C.G., D.D. MacDonald, N. Wang, J.L. Crane, L.J. Field, P.S. Haverland, N.E. Kemble, R.A. Lindskoog, C. Severn, and D.E. Smorong. 2000. Prediction of toxicity using consensus-based freshwater sediment quality guidelines. U.S. EPA Great Lakes National Program Office. EPA-905/R-00/007.

REFERENCES CONTINUED

Ingersoll, C.G., D.D. MacDonald, N. Wang, J.L. Crane, L.J. Field, P.S. Haverland, N.E. Kemble, R.A. Lindskoog, C. Severn, and D.E. Smorong. 2001. Predictions of sediment toxicity using consensus based freshwater sediment quality guidelines. Arch. Environ. Contam. Toxicol. 41:8-21.).

Lillie, R.A., and R.A. Schlesser, 1994. Extracting Additional Information from Biotic Index Samples, *The Great Lakes Entomologist*, 27(3):129-136.

Kabata-Pendias, Alina and Henryk Pendias. 1992. *Trace Elements in Soils and Plants*, 2nd Edition. CRC Press. Boca Raton, FL.

MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. "Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems". *Arch. Environ. Contam. Toxicol.* 39: 20-31.

Matthews, J.W., P.A. Tessene, S.C. Wiesbrook, and B.W. Zercher. 2005. Effect of area and isolation on species richness and indices of floristic quality in Illinois, USA wetlands. Wetlands. 25:3 (607-615).

M.T. Bosko & Associates, 2006. Baseline Ecological Risk Assessment Work Plan for the Old American Zinc Plant Site, Fairmont City, Illinois, 18 pp.

Ontario Ministry of Environment (OMOE). 2002. Soil Investigation and Human Health Risk Assessment for the Rodney Street Community, Port Colborne, Publication # 4255e, http://www.ene.gov.on.ca/envision/land/portcolborne/4255e.htm

Swink, F. and G. Wilhelm. 1994. *Plants of the Chicago Region, 4th Edition*. Indianapolis: Indiana Academy of Science.

Taft, J.B., C. Hauser, and K. R. Robertson. 2006. Estimating floristic integrity in tallgrass prairie. Biological Conservation. 131:42-51.

Taft, J.B., G.S. Wilhelm, D.H. Ladd, and L.A. Masters. 1997. Floristic quality assessment for vegetation in Illinois: a method for assessing vegetation integrity. Erigenia. 15:3-95.

U.S. Environmental Protection Agency (EPA). 1990. Biological Criteria: National Program Guidance for Surface Waters. Office of Water Regulations and Standards. U.S. EPA, Washington D.C. EPA-440/5-90-004.

REFERENCES CONTINUED

- U.S. Environmental Protection Agency (EPA). 1992a. Framework for Ecological Risk Assessment. EPA/630/R-92/001.
- U.S. Environmental Protection Agency (EPA). 1992b. Sediment Classification Methods Compendium. EPA 823-R-92-006.
- U.S. Environmental Protection Agency (EPA). 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments Interim Final. EPA 540-R-97-006.
- U.S. Environmental Protection Agency (EPA). 1998. Guidelines for Ecological Risk Assessment (EPA, 1998). EPA/630/R-95/002F.
- U.S. Environmental Protection Agency (EPA). 1999. Ecological Risk Assessment and Risk Management Principles for Superfund Sites. OSWER Directive 9285.7-28P.
- U.S. Environmental Protection Agency (EPA). 2000. (Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates. EPA 600/R-99/064.
- U.S. Environmental Protection Agency (EPA). 2002a. Methods for Evaluating Wetland Condition #10 Using Vegetation to Assess Environmental Conditions in Wetlands. Office of Water. EPA-822-R-02-202.
- U.S. Environmental Protection Agency Region IV, 2002b. Ecological Assessment Standard Operating Procedures and Quality Assurance Manual, 2002.
- U.S. Environmental Protection Agency Region V (EPA). 2004. Mercury Emissions from Motor Vehicles. http://www.epa.gov/ttn/chief/conference/ei13/toxics/hoyer.pdf.
- U.S. Environmental Protection Agency Region V (EPA). 2005. Superfund Ecological Risk Assessment 8-step Overview (EPA, 2005). Last updated on Monday, January 3, 2005. http://www.epa.gov/region5superfund/ecology/html/8stepera.html
- Wilhelm, G. and D. Ladd. 1988. Natural areas assessment in the Chicago region. Transaction of the North American Wildlife and Natural Resources Conference. 53:361-375.

Wisconsin Department of Natural Resources (WDNR). 2003. Consensus-Based Sediment Quality Guidelines Recommendations for Use & Application Interim Guidance. Developed by the Contaminated Sediment Standing Team. December 2003. WT-732 2003.

Tables

Table 3-1
Assessment and Measurement of Endpoints
Former American Zinc Plant Site, Fairmont City

Feeding Guild	Assessment Endpoint	Endpoint Objective	Surrogate Species or Community	Measures of Exposure
Benthic organisms	Benthic invertebrates are an important food source for many higher trophic level predators. They also provide an important role as	Are heavy metals in sediment and surface water adversely affecting benthic communities?	Benthic organisms	Comparison of sediment and aqueous media concentrations with toxicity-based screening values.
	decomposers/detritivores in nutrient cycling. Assessment endpoint = preservation of the health and diversity	Are heavy metals bioaccumulating in benthic organisms?		Tissue concentrations in benthos.
	(taxa richness and abundance) of benthic organisms.	Are heavy metals toxic to benthic organisms?		Chironomus tentans 10-day bioassay.
		Have heavy metals impacted the benthic macroinvertebrate community?		Benthic community structure and function assessment and reference area comparison.
Wetland plants	Wetland plants are an important food source for higher trophic level aquatic consumers and wildlife. Rooted vegetation also provides	Are heavy metals in sediment and surface water adversely affecting wetland plant populations?	Wetland plants	Comparison of sediment and aqueous media concentrations with toxicity-based screening values.
	habitat and bottom stability Assessment endpoint = preservation of the health and	Are heavy metals bioaccumulating in plants?		Tissue concentrations in wetland plants.
	diversity (taxa richness and abundance) of wetland plants.	Have heavy metals impacted the wetland plant community?		Community analysis (e.g., species richness and dominance, percent cover, floristic quality assessment) and reference area comparison.

TABLE 4.1 SUMMARY OF SURFACE WATER AND SEDIMENT SAMPLES COLLECTED FOR CHEMICAL ANALYSES FORMER AMERICAN ZINC PLANT SITE FAIRMONT CITY, ILLINOIS

FAIRMONT CITY, ILLINOIS									
SAMPLE	DATE	TIME	MATRIX	DEPTH (feet)	ANALYTICAL PAREMETERS [1]	DESCRIPTION			
EAST DITCH #1	·								
SD-01-0.5	5/31/2006	1030	SED	0.0 - 0.5	Metals, Pest.				
SW-01	5/31/2006	1000	SW	0.0 - 0.5	Metals, Pest.	North end of ditch.			
	6/29/2006	1645	SW	0.0 - 0.5	Hardness				
SD-05-0.5	5/31/2006	0955	SED	0.0 - 0.5	Metals, Pest.				
SW-05	5/31/2006	0945	SW	0.0 - 0.5	Metals, Pest.	Confluence with Ditch #2.			
L	6/29/2006	1700	sw	0.0 - 0.5	Hardness				
SD-06-0.5	5/31/2006	0920	SED	0.0 - 0.5	Metals	South of East Ditch #2 confluence.			
	SW-06 5/31/2006 0910 SW 0.0 - 0.5 Metals								
SD-02-0.5	AST DITCH #2 SD-02-0.5 5/31/2006 1110 SED 0.0 - 0.5 Metals East end of ditch.								
ROSE CREEK - UPST			J SED	0.0 - 0.5	IVICIAIS	Last one of officer.			
SD-04-0.5	6/1/2006	1030	SED	0.0 - 0.5	Metals, Pest.	SW corner of Cargill facility, East of East Ditch #1 confluence.			
RSD-1	7/17/2007	1127	SED	0.0 - 0.5	Metals	Near SE corner of Cargill facility, east of Kings Highway.			
RSD-2	7/17/2007	1130	SED	0.0 - 0.5	Metals	Near SE corner of Cargill facility, east of Kings Highway, west of RSD-1.			
RSD-3	7/17/2007	1140	SED	0.0 - 0.5	Metals	Near SE corner of Cargill facility, west of Kings Highway.			
RSD-4	7/17/2007	1149	SED	0.0 - 0.5	Metals	Near SE corner of Cargill facility, west of Kings Highway and RSD-3			
ROSE CREEK BORDE	RING FACILITY								
SD-08-0.5	5/31/2006	0820	SED	0.0 - 0.5	Metals, Pest.				
SW-08	5/31/2006	0810	SW	0.0 - 0.5	Metals, Pest.	Just west of East Ditch #1 confluence.			
SVV-08	6/29/2006	1705	SW	0.0 - 0.5	Hardness				
ROSE CREEK - DOWN									
SD-09-0.5	5/30/2006	1630	SED	0.0 - 0.5	Metals, Pest.	At base of discharge pipe for combined discharge of West Ditch #1 and #2 into Rose Creek. (In erosion pool in bed of Rose Creek, created by discharge from west ditch outfall.)			
SW-41	12/12//2006	1345	SW	0.0 - 0.5	Metals, Hardness				
SW-41-D	12/12//2006	1345	SW	0.0 - 0.5	Metals, Hardness				
SW-41-Resample	7/19/2007	0910	SW	0.0 - 0.5	Metals	10.5 feet SW of SD-10. (Downstream edge of erosion pool in bed of Rose Creek,			
SW-41-Resample - D	7/19/2007	0910	SW	0.0 - 0.5	Metals	created by discharge from west ditch outfall.)			
SD-41	12/12//2006	1350	SED	0.0 - 0.5	Metals				
SD-41-D	12/12//2006	1350	SED	0.0 - 0.5	Metals				
SW-42	12/12//2006	1400	SW	0.0 - 0.5	Metals, Hardness	129 feet downstream (WSW) of SW/SD-41			
SD-42	12/12//2006	1405	SED	0.0 - 0.5	Metals	129 reet downstream (WSW) of SW/SD-41			
SD-10-0.5	6/12/2006	1355	SED	0.0 - 0.5	Metals	326 feet downstream (WSW) of 09.			
SW-10	6/12/2006	1345	SW	0.0 - 0.5	Metals	ozo isst doministrati (incity or so:			
SD-11-0.5	6/12/2006	1330	SED	0.0 - 0.5	Metals	1482 feet downstream (WSW) of 09.			
SW-11	6/12/2006	1320	SW	0.0 - 0.5	Metals				
SD-12-0.5	6/12/2006	1550	SED	0.0 - 0.5	Metals				
SD-12/FD	6/12/2006	1550	SED	0.0 - 0.5	Metals	2769 feet downstream (WSW) of 09.			
SW-12	6/12/2006	1545	SW	0.0 - 0.5	Metals				
SW-12/FD	6/12/2006	1545	SW	0.0 - 0.5	Metals				
SW-43	12/12//2006	1440	SW SW	0.0 - 0.5	Metals, Hardness	205 feet			
SW-43-Resample	7/18/2007	1136 1445		0.0 - 0.5	Metals	225 feet upstream (SE) of 13.			
SD-43 SW-44	12/12//2006 12/12//2006	1445	SED	0.0 - 0.5	Metals Hardage				
SW-44 Resample	7/18/2007	1154	SW	0.0 - 0.5 0.0 - 0.5	Metals, Hardness Metals				
SD-44	12/12//2006	1452	SED	0.0 - 0.5	Metals	144 foot unstroom (CE) of 42			
SD-13-0.5	6/12/2006	1117	SED	0.0 - 0.5	Metals	144 feet upstream (SE) of 13.			
SW-13	6/12/2006	1117	SW	0.0 - 0.5	Metals				
3,7-10	12/14/2006	,			Grain size	4452 feet downstream (west) of 09.			
SD-13-R		1015	SED	0.0 - 0.5	distribution, TOC				
ROSE CREEK OUTFA	LL				,				
SD-14-0.5	6/12/2006	1018	SED	0.0 - 0.5	Metals	Outside of and above ditch channel, 18 feet E of SD-16.			
SD-15-0.5	6/12/2006	1015	SED	0.0 - 0.5	Metals	Outside of and above ditch channel, 10.9 feet E of SD-16 and W of SD-14.			
SD-16-0.5	6/12/2006	1020	SED	0.0 - 0.5	Metals	In main ditch channel. No standing water.			
SD-17-0.5	6/12/2006	1040	SED	0.0 - 0.5	Metals	West edge of ditch channel, 11.2 feet SW of SD-16. Standing water present.			
SW-17 SD-18-0.5	6/12/2006 6/12/2006	1040	SW	00.00	Metals	0.000 7.7.7.			
CAHOKIA CREEK WA		1030	SED	0 0 - 0.5	Metals	Outside of and above ditch channel, 18.9 feet SW of SD-16.			
TRC-2-S1-0-6			SED			Marsh wetlands NW of scour channel created by Rose Creek Outfall, approx. 350 feet			
	7/19/2007	1055		0.0 - 0.5	Metals	NW of outfall.			
CAHOKIA CREEK WA	7/18/2007		CE C	00.05					
TRC-1-N-0-6		1615	SED	0.0 - 0.5	Metals				
TRC-1-N-6-8	7/18/2007	1615	SED	0.5 - 0.7	Metals	Lake C, northeast bank.			
TRC-2-N-0-6 TRC-2-N1-0-6	7/18/2007	1535	SED	0.0 - 0.5	Metals	Lake B, west bank.			
TRC-2-N1-0-6	7/18/2007	1512	SED	0.0 - 0.5	Metals	1.1.2.1.1.2.2.2			
	7/18/2007	1512	SED	0.5 - 0.7	Metals	Lake B, bank.at SW comer.			
TRC-2-C-0-6 TRC-2-C-10-12	7/18/2007 7/18/2007	1535	SED	0.0 - 0.5	Metals	Constituted in world it. O. (1) 1 O.			
TRC-3-N-0-6	7/18/2007	1535	SED	0.8 - 1.0	Metals	Small pond in wooded area S of Lake B.			
TRC-3-N-0-6 FD	7/18/2007	1700 1700	SED	0.0 - 0.5	Metals				
TRC-3-N-8-10	7/18/2007	1700	SED SED	0.0 - 0.5	Metals	Laba A = 10.1			
11/0-0-10-10	111012001	1700	3ピリ	0.7 - 0.8	Metals	Lake A, north bank.			

TABLE 4.1 (Continued) SUMMARY OF SURFACE WATER AND SEDIMENT SAMPLES COLLECTED FOR CHEMICAL ANALYSES FORMER AMERICAN ZINC PLANT SITE FAIRMONT CITY, ILLINOIS

SAMPLE	DATE	TIME	MATRIX	DEPTH (feet)	ANALYTICAL PAREMETERS [1]	DESCRIPTION			
CAHOKIA CREEK WATERSHED - CAHOKIA CREEK AND ENGINEERED DRAINAGE DITCH									
SW-50	7/19/2007	1500	SW	0.0 - 0.5	Metals				
SD-50-0-6	7/18/2007	0940	SED	0.0 - 0.5	Metals				
SD-50-8-10	7/18/2007	0940	SED	0.8 - 0.9	Metals	Cahokia Creek, immediately south of Interstate			
SD-51DITCH-0-6	7/18/2007	0925	SED	0.0 - 0.5	Metals				
SD-51DITCH-8-10	7/18/2007	0925	SED	0.8 - 0.9	Metals	Engineered Prainage Ditch, immediately couth of Interstate			
SD-51DITCH-12-14	7/18/2007	0925	SED	1.0 - 1.2 0.0 - 0.5	Metals Metais	Engineered Drainage Ditch, immediately south of Interstate			
TRC-2-S-0-6	7/18/2007	0905 0905	SED SED	0.0 - 0.5	Metals				
TRC-2-S-8-10 TRC-2-S-12-14	7/18/2007 7/18/2007	0905	SED	1.0 - 1.2	Metals	Engineered Drainage Ditch, NW of Rose Creek Outfall			
TRC-3-S-0-6	7/18/2007	0940	SED	0.0 - 0.5	Metals	Engineered Dramage Ditari, 1444 of 11050 Ordali Odilari			
TRC-3-S-7-9	7/18/2007	0940	SED	0.6 - 0.8	Metals	Wetlands east of Schoenberger Creek			
SW-TRC-3-S-	7/19/2007	1315	SW	0.0 - 0.5	Metals				
	SAHOKIA CREEK WATERSHED - OTHER								
TRC-1-S-0-6			SED						
	7/19/2007	1130		0.0 - 0.5	Metals	Marie and A CE 1 and D 1 and D 2 and D			
TRC-1-S-0-6 FD	7/19/2007	1130	SED	0.0 - 0.5	Metals	Wetland east of Engineered Drainage Ditch, NE of Rose Creek Outfall (Note this			
TRC-1-S-6-8 WEST DITCH #2	7/19/2007	1120	SED	0.5 - 0.6	Metals	sample was NOT located within the Engineered Drainage Ditch).			
SW-07	6/2/2006	1400	SW	0.0 - 0.5	Metals				
SW-07-FD	6/2/2006	1400	SW	0.0 - 0.5	Metals				
SD-07-0.5	6/2/2006	1410	SED	0.0 - 0.5	Metals	North end of ditch.			
SD-07-0.5/FD	6/2/2006	1410	SED	0.0 - 0.5	Metals	1			
WEST DITCH #1									
SD-23-0.5	6/2/2006	1345	SED	0.0 - 0.5	Metals	What adop of facility, approximately 750 fact parth of 09			
SD-23-0.5/FD	6/2/2006	1345	SED	0.0 - 0.5	Metals	West edge of facility, approximately 750 feet north of 09.			
SD-24-0.5	6/1/2006	1420	SED	0.0 - 0.5	Metals, Pest.	West edge of facility, 1216 feet north of 09.			
SW-24	6/1/2006	1410	SW	0.0 - 0.5	Metals, Pest.	West edge of facility, 12 to feet florid to 33.			
SD-25-0.5	6/1/2006	1145	SED	0.0 - 0.5	Metals	West edge of facility, 2045 feet north of 09.			
SD-25-0.5/FD	6/1/2006	1145	SED	0.0 - 0.5	Metals				
SD-26-0.5	6/1/2006	1135	SED	0.0 - 0.5	Metals	NW edge of facility, 306 feet SW of 27.			
SD-27-0.5	6/1/2006	1115 1100	SED SED	0.0 - 0.5 0.0 - 0.5	Metals	At northwest corner of facility. Off-site, 290 feet NW of 27			
SD-28-0.5 WEST DITCH OUTFAL	6/1/2006				Metals	Oli-site, 290 feet NW 0/ 27			
SD-29-0.5	6/1/2006	0845	SED	0.0 - 0.5	Metals	Outside of and above ditch channel, 27 feet east of SD-31.			
SD-30-0.5	6/1/2006	0855	SED	0.0 - 0.5	Metals	Outside of and above ditch channel, 11.4 feet ENE of SD-31, west of SD-29.			
						In ditch channel downstream of outfall point north of Collinsville Road. Standing water			
SD-31-0.5	6/1/2006	0905	SED	0.0 - 0.5	Metals	present.			
SD-32-0.5	6/1/2006	0910	SED	0.0 - 0.5	Metals	Outside of and above ditch channel, 16.5 feet SW of SD-31.			
			-						
SD-33-0.5	6/1/2006	0920	SED	0.0 - 0.5	Metals	Outside of and above ditch channel, 30 feet SSW of SD-31.			
SD-034	6/28/2006	1535	SED	0.0 - 0.5	Metals				
SD-034-D	6/28/2006	1535	SED	0.0 - 0.5	Metals	51 - 4 1: 011 0 1 11: 0 . 1 14. 1 1 0 54.5 - 1 114. 1 1			
SW-34	6/28/2006	1530	SW	0.0 - 0.5	Metals, Hardness	Edge of open pond in Old Cahokia Creek Watershed, 351 feet NW of 31.			
SW-34-D	6/28/2006	1530	SW	0.0 - 0.5	Metals, Hardness				
	12/12/2006		SW	0.0 - 0.5					
SW-45		1100			Metals, Hardness	Between West Ditch Outfall and edge of open water, 154 feet NNW of 31.			
SD-45	12/12/2006	1105	SED	0.0 - 0.5	Metals				
SD-46 SD-47	12/13/2006	1431 1437	SED	0.0 - 0.5 0.0 - 0.5	Metals	NNE of SW/SD-45.			
SD-48	12/13/2006 12/13/2006	1448	SED	0.0 - 0.5	Metals Metals	NNW of SW/SD-45. WNW of SW/SD-45.			
CAHOKIA CREEK WA				0.0 - 0.5	IVICIAIS	VVNVV 01 SVV/SD-45.			
SW-38	12/12//2006	1110	SW	0.0 - 0.5	Metals, Hardness				
SW-38 Resample	7/18/2007	0949	SW	0.0 - 0.5	Metals	1			
SD-38	12/12//2006	1115	SED	0.0 - 0.5	Metals				
			SED		Grain size				
SD-38-R	12/13/2006	1500		0.0-0.5	distribution, TOC	175 feet ENE of SW/SD-34, along south edge of open water.			
SW-39	12/12//2006	1120	SW	0.0 - 0.5	Metals, Hardness				
SW-39 Resample	7/18/2007	1007	SW	0.0 - 0.5	Metals				
SD-39	12/12//2006	1125	SED	0.0 - 0.5	Metals	73 feet NE of SW/SD-38, along south edge of open water.			
SW-40	12/12//2006	1130 1024	SW	0.0 - 0.5 0.0 - 0.5	Metals, Hardness				
SW-40 Resample SD-40	7/18/2007 12/12//2006	1135	SW SED	0.0 - 0.5	Metals Metals	40 for th NIT of OIAVOR 20 of the state of t			
TWD-1-N-0-6	7/17/2007	1030	SED	0.0 - 0.5	Metals	_46 feet NE of SW/SD-39, along south edge of open water.			
TWD-1-N-6-8	7/17/2007	1030	SED	0.5 - 0.7	Metals	Transect TWD-1, northern edge of open water.			
TWD-1-C-0-6	7/17/2007	1105	SED	0.0 - 0.5	Metals	manaect 1995-1, northern eage of open water.			
TWD-1-C-6-10	7/17/2007	1105	SED	0.5 - 0.8	Metals	Transect TWD-1, center of open water, SE of TWD-!-N.			
TWD-1-S-0-6	7/17/2007	1125	SED	0.0 - 0.5	Metals				
TWD-1-S-6-9.5	7/17/2007	1125	SED	0.5 - 0.8	Metals	Transect TWD-1, southern edge of open water, SE of TWD-1-C.			
TWD-2-N-0-6	7/17/2007	1535	SED	0.0 - 0.5	Metals				
TWD-2-N-6-7	7/17/2007	1535	SED	0.5-0.6	Metals	Transect TWD-2, northern edge of open water.			
TWD-2-C-0-6	7/17/2007	1512	SED	0.0 - 0.5	Metals				
TWD-2-C-6-9	7/17/2007	1512	SED	0.5 -0.8	Metals				
TWD-2-C-6-9 DUP	7/17/2007	1512	SED	0.5 -0.8	Metals	Transect TWD-2, center of open water, SE of TWD-2-N.			
TWD-2-S-0-6	7/17/2007	1455	SED	0.0 - 0.5	Metals				
TWD-2-S-6-8	7/17/2007	1455	SED	0.5 - 0.7	Metals	Transect TWD-2, southern edge of open water, NE of SW/SD-34TWD-1-C.			
TWD-3-N-0-6	7/17/2007	1635	SED	0.0 - 0.5	Metals	T			
TWD-3-N-6-8	7/17/2007	1635	SED_	0.5 - 0.7	Metals	Transect TWD-3, northern edge of open water.			

TABLE 4.1 (Continued) SUMMARY OF SURFACE WATER AND SEDIMENT SAMPLES COLLECTED FOR CHEMICAL ANALYSES FORMER AMERICAN ZINC PLANT SITE FAIRMONT CITY, ILLINOIS

CAMPIE	DATE		MATRIX	DEPTH ANALYTICA		DESCRIPTION	
SAMPLE	DATE	TIME	MATRIX	(feet)	PAREMETERS [1]	DESCRIPTION	
CAHOKIA CREEK WA	TERSHED NEAR V	VEST DITCH	OUTFALL (C				
TWD-3-C-0-6	7/17/2007	1620	SED	0.0 - 0.5	Metals		
TWD-3-C-6-8.5	7/17/2007	1620	SED	0.5 - 0.7	Metals	Transect TWD-3, center of open water, SE of TWD-3-N.	
TWD-3-S-0-6	7/17/2007	1600	SED	0.0 - 0.5	Metals		
			SED	0.5 - 0.7			
TWD-3-S-6-8	7/17/2007	1600			Metals		
TWD-3-S-10-12	7/17/2007	1600	SED	0.8 - 1.0	Metals	Transect TWD-3, southern edge of open water, SE of TWD-3-C.	
HOENBERGER CREE	K						
SD-20-0.5	6/13/2006	0905	SED	0.0 - 0.5	Metals	Between two discharge structures draining water from Old Cahokia Creek Watershe into creek, east side of creek.	
SD-20-0.5/FD	6/13/2006	0905	SED	0.0 - 0.5	Metals		
SW-20	6/13/2006	0855	SW	0.0 - 0.5	Metals]	
SW-20/FD	6/13/2006	0855	sw	0.0 - 0.5	Metals		
SD-21-0.5	6/12/2006	0900	SED	0.0 - 0.5	Metals	Between two discharge structures draining water from Old Cahokia Creek Watershinto creek, east side of creek, downstream of 20.	
SW-21	6/12/2006	0900	SW	0.0 - 0.5	Metals	<u> </u>	
SD-22-0.5	6/13/2006	0932	SED	0.0 - 0.5	Metals	Approximately 120 feet upstream (south) of Collinsville Road.	
SW-22	6/13/2006	0925	sw	0.0 - 0.5	Metals		
SD-36	6/29/2006	0835	SED	0.0 - 0.5	Metals	At northern-most discharge structure draining water from watershed on the NE side of the creek.	
SW-36	6/29/2006	0830	SW	0.0 - 0.5	Metals, Hardness	1	
SD-037	6/29/2006	0930	SED	0.0 - 0.5	Metals	Approximately 125 feet downstream of 36, on SW side of creek.	
SW-37	6/29/2006	0925	SW	0.0 - 0.5	Metais, Hardness]	
SD-52	7/18/2007	1045	SED	0.0 - 0.5	Metals	West of Highway 203.	
SW-52	7/19/2007	1340	SW	00-0.5	Metals		
OTHER							
SD-03-0.5	6/1/2006	1010	ŞED	0.0 - 0.5	Metals, Pest.	Ditch along west side of Kingshighway. Direction of runoff flow at this point is indeterminate.	

Metals parameters included the RCRA 8 parameters and zinc. Surface water samples were analyzed for both total and dissolved concentrations of these metals. Samples collected in December 2006 and July 2007 also included copper.

TABLE 4-2 SUMMARY OF YSI READINGS Former American Zinc Plant Site Fairmont City, Illinois

DATE	TIME	SAMPLE LOCATION	DEPTH (ft)	рН	CONDUCTIVITY (MMHOS/CM)	TEMPERATURE (°C)	DO (mg/L)	ORP (mV)
6/28/2006	825	SW-06	1.8	7.2	292	22.82	1.72	-159.8
6/28/2006	910	SW-01	0.8 - 1.3	7.22	213	19.87	1.19	-119.4
6/28/2006	950	SW-05	0.5- 0.6	7.21	294	22.4	5.03	-13.1
6/28/2006	1025	SW-08		7.73	274	23.61	5.11	-38.5
6/28/2006	1130	SW-34	0.5	6.85	871	27.41	0.54	-196.3
6/28/2006	1155	SW-36	0.8 - 1.0	6.78	671	23.05	6.36	-134.6
6/29/2006	825	SW-36	0.8 - 1.0	6.77	578	21.85	1.36	-141.1
6/29/2006	920	SW-37	0.7 - 0.8	7.15	416	22.62	2.73	-139.9
6/30/2006	830	SW-13		7.78	669	20,62	3.39	53.6*
12/12/2006	853	SW -38	0.38	6.9	1.726	3		228.9
12/12/2006	1110	SW -38		7.17	1.77	4.64	137	163.3
12/12/2006	903	SW -39	0.5	6.6	1.95	5.2		209.7
12/12/2006	1115	SW-39		7	1.868	7.05	125.6	187.89
12/12/2006	912	SW-40	0.38	6.77	1.923	5.62		167.9
12/12/2006	1130	SW-40		5.58	2.093	8.28	120	177.9
12/12/2006	1343	SW-4I	0.125	7	1.004	6.26	99.7	129.6
12/12/2006	1400	SW-42	0.25	7.04	0.826	11.04	91.6	148.3
12/12/2006	945	SW-43	0.67	7.7	0.903	7		151
12/12/2006	1440	SW-43		7.6	0.87	7.85	37.8	74.8
12/12/2006	954	SW-44	0.67	7.83	0.893	7.7	11.9	136.3
12/12/2006	845	SW-45	0.25	6.68	1.44	9.94		267.2
12/12/2006	1100	SW -45					84	
7/18/2007	949	SW-38	0.7	7.15	1.318	26.27	10.12	54.4
7/18/2007	1007	SW-39	0.6	7.15	1.319	26.37	6.4	-346.9
7/18/2007	1024	SW-40	0.8	7.09	1.305	25.65	2.3	-266.5
7/18/2007	1136	SW-43	0.5	8.08	0.386	24.99	12.32	-40.7
7/18/2007	1154	SW-44	0.4	7.04	0.418	24.24	5.28	-4.03
7/19/2007	910	SW-41	1.2	7.09	1.305	25.65	2.3	-266.5
7/19/2007	1315	SW-TRC-3-S	0.4	6.73	0.876	27.65	1.18	-238.2
7/19/2007	1340	SW-52	0.5	7.97	0.57	30.61	10.71	-57.7

^{*} ORP reading slowly decreased and never stabilized, value recorded after approximately 2 minutes.

Table 4-3
Summary of Bioassay Sediment Sample Locations

Bioassay Sample	Ditch / Waterbody	Location description	Associated Chemistry Sample
SD-CT-01	East Ditch #1	North end, west side.	SD-01
SD-CT-05	East Ditch #1	Confluence of East Ditch #2.	SD-05
SD-CT-06	East Ditch #1	Northwest side of the ditch, between the confluence with East Ditch #2 and Rose Creek.	SD-06
SD-CT-08	Rose Creek	West of the East Ditch #1 confluence.	SD-08
SD-CT-13	Rose Creek	Roughly 200 feet east-southeast of Collinsville Road	Approximately 200 feet up-gradient of SD-13
SD-CT-34	Old Cahokia Creek Watershed	Edge of open water northwest of West Ditch Outfall	SD-34
SD-CT-36	Schoenberger Creek	At western-most culvert outfall along north-east side of the Creek that receives drainage from the adjacent Old Cahokia Creek Watershed.	SD-36

TABLE 4-4 PHYSICAL APPEARANCE OF SEDIMENT COLLECED FOR BIOASSAYS FORMER OLD AMERICAN ZINC PLANT FAIRMONT CITY, ILLINOIS

SEDIMENT IDENTIFICATION	DRAINAGE WAY / AREA	DESCRIPTION
Laboratory control		Shredded brown paper toweling
BT-CT-01 (Field Control)	East Ditch #1	Dark clayey loam with decaying vegetation, no odor, no oily sheen, oligocahetes and three midges were removed.
BT-CT-05	East Ditch #1	Dark brownish clay with decaying vegetation, no odor or oily sheen, rust-iron layer, no macroinvertebrates were observed.
BT-CT-06	Rose Creek	Dark clayey loam with decaying vegetation, no odor or oily sheen, oligocahetes and two midges were removed.
BT-CT-08	Rose Creek	Black clayey silt with decaying vegetation, no odor or oily sheen, some oligochaetes were removed.
BT-CT-13	Rose Creek	Grayish clay silt, less vegetation, no odor or oily sheen, no macroinvertebrates were found.
BT-CT-34	West Ditch Outfall	Black clay with duck weed (Lemna sp.) and other vegetation, no odor or oily sheen, some oligochaetes were found.
BT-CT-036	Schoenberger Creek	Black clay with big pieces of twigs and some decaying vascular plant material, no odor or oily sheen, a few oligochaetes were removed.

From Attachment C, Whole Aquatic Sediment Evaluation Employing the Dipteran, Chironimus tetans

Table 4-5 Benthic Tissue Sample Composition Former American Zinc Plant Site Fairmont City, Illinois

Sample No.	Location	Family Name	Common Name	Trophic status
BT-SD-01	East Ditch 1 at origin	Aeschnidae	darner dragonflies	predator
BT-SD-05	East Ditch 1 at mouth of East Ditch 2	Physidae Coenagrionidae Aeschnidae Chironomidae	pond snails narrow-winged damselflies darner dragonflies nonbiting midges	scraper predator predator gatherer
BT-SD-06	East Ditch 1 downstream of East Ditch 2	Physidae Coenagrionidae Chironomidae	pond snails narrow-winged damselflies nonbiting midges	scraper predator gatherer
BT-SD-06 DUP	East Ditch 1 downstream of East Ditch 2	Physidae Coenagrionidae Chironomidae	pond snails narrow-winged damselflies nonbiting midges	scraper predator gatherer
BT-SD-08	Rose Creek at discharge of East Ditch 1	Aeschnidae Libellulidae	darner dragonflies skimmer dragonflies	predator predator
BT-SD-08 DUP	Rose Creek at discharge of East Ditch 1	Aeschnidae Libellulidae	darner dragonflies skimmer dragonflies	predator predator
BT-SD-13	Rose Creek upstream of Collinsville Road	Aeschnidae Calopterygidae	darner dragonflies broad-winged damselflies	predator predator
BT-SD-34	Shallow marsh discharge of West Ditch 1	Planorbidae	orb snails	scraper
BT-SD-22	Schoenberger Creek upstreram of Collinsville Road	Aeschnidae	darner dragonflies	predator
BT-SD-36	Schoenberger Creek at discharge of the Engineered Ditch	Physidae Coenagrionidae Aeschnidae Libellulidae	pond snails narrow-winged damselflies darner dragonflies skimmer dragonflies	scraper predator predator predator
BT-SD-37	Schoenberger Creek downstream of discharge of the Engineered Ditch	Aeschnidae	darner dragonflies	predator

TABLE 4-6
SUMMARY OF AQUATIC MACRO-INVERTEBRATE COMMUNITY SAMPLING LOCATIONS
FORMER OLD AMERICAN ZINC PLANT
FAIRMONT CITY, ILLINOIS

SAMPLE DESIGNATION	DRAINAGE WAY / AREA	SAMPLE DATE	APPROXIMATE SAMPLE TIME	NOTES [1]
BT-SD-01	East Ditch #1	June 27, 2006	1045 -1215	Sampled area extended from SD-SW-01 /SD-CT-01 south approximately 200 feet. Sample consist predominantly of dragonfly larva.
BT-SD-05	East Ditch #1	June 27, 2006	1430 - 1700	Sample area extended from SD-SW-05/SD-CT-05 south approximately 100 feet.
BT-SD-06	Rose Creek	June 28, 2006	0845 - 1040	Sampled area extended from SD-SW-06/SD- CT-06 northeast approximately 85 feet. Duplicate tissue sample collected.
BT-SD-08	Rose Creek	June 28, 2006	1115 - 1245	Sample area extended from SD-SW-08/SD- CT-08 northeast approximately 60 feet.
BT-SD-13	Rose Creek	June 29, 2006	0800 - 0930	Sampled area encompassed approximate 75 foot stretch of creek, roughly 200 feet east of sediment sample SD-13/SD-CT-13.
BT-SD-22	Schoenberger Creek	June 30, 2006	0730 - 0900	Sampled area encompassed approximate 160- foot stretch of creek south and north of SD- SW-022.
BT-SD-34	West Ditch Outfall	June 28, 2006	1500 - 1630	Along edge of open water in Old Cahokia Creek Watershed, downstream of outfall.
BT-SD-036	Schoenberger Creek	June 29, 2006	1130 -1300	Sampled area encompassed approximate 250 foot strecth of creek upstream and downstream of SD-SW-036.
BT-SD-037	Schoenberger Creek	June 29, 2006	1400 - 1530	Sampled area encompassed approximate 60 foot stretch of creek upstream and downstream of SD-SW-037.

^{1 -} SD-00X and SW-00X reference the locations of sediment and/or surface water samples collected for chemical analyses.

Concentrations of 8 RCRA Metals, Copper, Zinc (mg/Kg) and Detected Pesticide Compounds (ug/Kg) in Sediment Samples Compared to Ecological Screening Levels
Old American Zinc Plant Site, Fairmont City, Illinois

Sample ID: Date Collected Depth (ft - ft) Location	- 1	USEPA Region V Ecological Screening evels (ESLs) Imp(Ke)	SD-01-0.5 5/31/2006 0 - 0.5 East Ditch 1	SD-05-0-5 5/31/2006 0 - 0.5 East Ditch 1	SD-46-0.5 5/31/2006 0 · 0.5 East Ditch 1	SD-92-0.5 5/31/2006 0 - 0.5 Essi Drich 2	SD-03-0.5 6/1/2006 0 - 0.5 Ditch stong Kingshwy	SD-04-0 5 6/1/2006 0 - 0.5 Rose Creek (upstreem)	SD-98-0.5 5/31/2006 0 - 0.5 Rose Creek (at- grte)	SD-07-0.5 6/2/2006 0 - 0.5 West Ditch 2	SD-07-9.5/FD 6/2/2006 0 - 0.5 West Ditch 2	SD-09-0.5 5/30/2006 0 - 0.5 Rose Creek	8D-41 12/12/2006 0 - 0.5 Rose Creek
Metals	Arsenic	9 79											
	Banum	9 79	17	130	8.5	93	10	6.7	29	96	45	60	94
			240	480	200	320	150	190	380	87	75	150	180
	dmium	0.96	130	270	61	24	38	6.5	460	37	37	100	160
	omium	43.4	33	24	14	50	26	60	74	11	10	32	58
Ç	Copper	31.6	na	na	na.	na	na	na	na	na	na	na	1,100
1	Lead	35 8	870	3,300	100	440	520	280	1,700	2,200	1,800	1,800	4,100
	Henium	1	4.5	54	17	1.9	0.97 B	33	5.5	16	0 92 B	3.4	5.9
	Silver	1	29	64	1.2	1.9	2.5	10	17	13	9.7	10	19
	Zinc	121	10,000	18,000	2,600	1,800	3,900	1,100	25,000	33,000	23,000	15,000	31,000
Mi	ercury _	0.174	6.1	8.8	2.2	1.0	0.32	0.26	6.4	0.57	0.96	1.9	1.6
Organics		(ug/Ka)							1			1	
ī	Aldrin	2	<60 U	96	na	na	<20 U	<38 U	<46 U	na	na	<21 U	na
	Dieldrin	1.9	<60 U	180	ne	na	170	27 J	93	na	na	43	na
4,4	-DDE	3	<60 U	<40 U	na	na	14 1	<38 U		na	na	<21 U	na
44	4'-DDT	- 4	<60 Ú	<40 U	na	ne.	43	<38 U	<46 U	na	na	14	na
	Endrin	21	<60 U	<40 U	na	na	53	<38 U	<46 U	na	na	<21 U	na
gamma-Chlo	ordane	3	<60 U	69	na	na	<20 U	<38 U	67	na	na	<21 U	na na

Sample ID Date Collected Depth (R · ft) Location	USEPA Region V Ecological Screening Levels (ESLs) Imaff(s)	SD-41-D 12/12/2006 0 - 0.5 Rose Creek	SD-42 12/12/2006 0 - 0.5 Rose Creek	SD-10-0.5 6/12/2006 0 - 0.5 Rose Creek	SD-11-0.5 6/12/2006 0 · 0.5 Rose Creek	SD-12-0.5 6/12/2006 g - 0.5 Rose Creek	SD-12/FD 6/12/2006 0.0 - 0.5' Rose Creek	SD-13-0.5 6/12/2006 0 - 0.5 Rose Creek	SD-43 12/12/2006 0 · 0.5 Rose Creek	SD-44 12/12/2006 0 - 0.5 Rose Creek	SD-14-0.5 6/12/2006 0 - 0.5 Rose Creek Outfall	SD-15-0.5 6/12/2005 0 · 0.5 Rose Creek Outfall
Mercury												
Arsenic	979	61	72	23	10	6.0	68	140	16	120	10	97
Banum	-	160 B	200 B	150	140	160	140	290	270 B	300 B	310	250
Cadmium	0.99	170	510	180	29	28	39	100	130	79	12	7.4
Chromium		27 B	33 B	24	33	23	29	31	71 B	31 B	23	21
Соррег	31.6	780	950	nat	na	na	na	na	160	100	na	n#
Lead		2,600	2,700	860	300	120	190	680	580	750	430	230
Selenium	-	4 6	52	27	15	<14 U	<1,4 U	2.4 B	19	2.4	0 72 B	1 2 B
Silver	1	13	18	6.1	1.2	0 45 B	0 72	1.8	3.0	3.7	0 64 B	0 35 B
Zinc		24,000	1,200	13,000	4,800	2,300	3,400	9,200	7,300	5,300	1,100	740
Mercury		0.92	2.8	1.5	0.66	0.25	0.33	1.0	3.4	2.7	0.29	0.26
Organics	(Ug/Kg)				1		1			ł		
Aldrin	. 2	na	na	na	na	na	∩a	na	na	na	na	na
Dietdrin	1.9	∩a	na	na	na	na	na	na	na	na	na	na
4.4"-DDE	3	па	na	na	na	na	na	na	na	na na	na	na
4,4'-DDT		na	na	na	na	na	na	næ	na	па	na	na
Endrin	3	na	na	na	na	na	na	na	na	па	na	nat
gamma-Chlordane	3	na	na	na	l na	na	l na	na	na	l na	na	i nat

Location	USEPA Region V Ecological Screening Lovels (ESLs) Imp(Ka)	SD-16-0 5 6/12/2006 0 - 0 5 Rose Creek Outfall	SD-17-0.5 6/12/2006 0 - 0.5 Rose Creek Outfell	SD-18-0 5 6/12/2006 0 - 0 5 Rose Creek Outfall	SD-20-0.5 6//3/2006 0 · 0.5 Sch Creek	SD-20-0.5/FD 6/13/2006 0.0 - 0.5 Sch. Creek	SD-21-0.5 6/12/2006 0 - 0.5 Sch. Creek	SD-22-0.5 6/13/2006 0 - 0 5 Sch. Creek	SD-36 5/29/2006 0 - 0.5 Sch Creek	SD -037 6/29/2006 0 · 0.5 Sch. Creek	SD-23-0.5 6/2/2006 0 - 0.5 West Ditch 1	SD-23-0.5/FD 6/2/2006 0 - 0.5 West Ditch 1
Metals										15	78	81
Arsenic Barium	9.70	8 2 220	20 120	9 5 250	12	12 480	13 510	12 640	13 270	340	270	290
Cadmium	0.99		120		510		510 27		19	44	130	120
	43.4	1.1	15	26	23	23 99		21	53	230	21	24
Chromium	31.6	19		22	120		110	250				
Copper	35.6	na	na 	na	na	na	na	na	∩a 70	па	na 1,700	na .
Lead		33	160	210	170	150	160	230		150		1,800
Setenium	1 1	<1.4.U	0 56 B	1,2 🖰	<25 U	19 B	<27 U	13B	0 89 B	188	19	2.7
Silver	l3	024 B	(135 B	0.64 B	0 72 B	0 57 B	0 67 B	0 86 B	0 23 B	0 96 B	13	14
Zinc		140	1,700	810	1,000	930	980	940	750	1,100	14,000	15,000
Mercury		0 078	0.46	0.45	0.51	0.63	0.38	0.30	0.22	0 25	1.4	1.2
Organics	(mg/Kg)		l									ł
Aldrin	2	na	na na	na	na	na	na	na na	na	na na	na	n.s.
Dieldrin		na	na	na	na	na na	na	na	na	na na	na	na
4 4"-DDE	3	na	na	na	па	na	na	na	na	na	na	na
4,4'-DD†	4	na	na	na	па	na na	na	na	na	na	na	na
Endrun	2	na	na	na	па	na	na	na	na	na	na	na
gamma-Chlordane		na	na	na	na	na	na	na	na	na na	na	na

- ne not enelyzed
 V Serial disultion exceeds the limits
 IUV, CCV, ICB, CCB, ISB, ISB, GRI, CRA or MRI, standard: instrument related to QC exceeds the control limits

Table 5-1 continued

Concentrations of 8 RCRA Metals, Copper, Zinc (mg/Kg) and Detected Pesticide Compounds (ug/Kg) in Sediment Samples Compared to Ecological Screening Levels Old American Zinc Plant Site, Fairmont City, Illinois

Sample ID (Date Collected Depth (R · R) Location	USEPA Region V Ecological Screening Levels (ESLs) (maRid)	SD-24-0.5 6/1/2006 0 - 0.5 West Dlich 1	SD-25-0 5 8/1/2008 0 - 0.5 West Ditch 1	8D-25-0.5/FD 6/1/2006 0 - 0.5 West Ditch 1	SD-26-0.5 6/1/2006 0 - 0.5 West Ditch 1	SD-27-0.5 6/1/2006 0 - 0.5 West Ditch 1	SD-28-0.5 6/1/2006 0 - 0.5 West Ditch 1	SD-29-0.5 6/1/2006 0 - 0.5 West Oftch 1 Outfall	SD-38-0 5 6/1/2006 0 - 0.5 West Ditch 1 Outfall	SD-31-0.5 6/1/2006 0 - 0.5 Wast Ditch 1 Outfall	SD-32-0.5 6/1/2006 0 - 0.5 West Ditch 1 Outlalf	SD-33-0.5 6/1/2006 0 - 0.5 West Ditch 1 Outfall
Metals Arsenic	9.79	130	9.3	60	24	29	27	11	13	80	25	1
Barium	- 7	510	120	480	230	400	200	190	180	220	270	140
Cadmium	0.99	630	27	650	64	61	51	43	72	32	69	6.6
Chromium	43.4	61	17	69	1 77	15	16	15	17	14	22	9.6
Copper	31.6	па	na	0.0	na	na na	na	na	na	na l	na	na l
Lead	35.8	5,600	3,300	3,000	810	980	730	380	510	52	870	46
Selenium	_	7.2	21 B	7.8	13	18	11 B	0 83 B	0 95 B	0 89 B	13	<10 U
Silver	1	33	36	40	3.8	3.2	5.1	1.4	1.8	0.24 B	4	<0.50 U
Zinc	121	40,000	6,800	95,000	21,000	20,000	15,000	4,000	3,800	7,900	6,400	590
Mercury	0.174	0.03	0 17	6.3	0.24	0.16	0.33	0.11	0 14	0 042	0.19	0 034
Oranganics	(veKs)											1
Aldrin	. 2	<30 U	na	na	na	na	na na	na	na	na	na	na
Drefdrin	1.9	41	na	na	na	ne	na	na.	na	na	na	na
4.4"-DDE	3	<30 U	na	na	na	na	na	na	na	na	na	na l
4,4'-DDT Endrin	3	<30 ∪ <30 U	na	na	na	na	na	na	na	na	na na	na na
gamma-Chlordane	3	<30 U	rus na	na na	na na	na na	na l	na na	ь	na na	na na	na l

Sample ID. Date Collected Depth (ft - ft) Location	LIBERA Region V Ecological Screening Lorelo (ESLs) (mg/Ka)	SD-034 6/28/2006 0 · 0.5 Cahokia Watershed ^[3]	8D-034-D 6/28/2006 0 - 0.5 Cahokia Watershed ^[3]	SD-38 12/12/2006 0 ⋅ 0 5 Cahokia Watershed ^[4]	SD-39 12/12/2006 0 · 0.5 Cahokia Watershed ^[4]	SD-40 12/12/2006 0 - 0.5 Cahokia Watershed ^[4]	SD-45 12/12/2006 0 - 0.5 Cahokia Wetland (7)	SD-46 12/13/2006 0 - 0 5 Cahokia Wetland III	SD-47 12/13/2006 0 - 0.5 Cahokia Wetland	SD-48 12/13/2906 0 - 0.5 Cahokia Wetland
Arsenic	9.79	15	17	15	20	- 11	15	19	19	25
Barium		210	230	220 B	120 B	140 B	210 B		220 B	210 B
Cadmium	0.99		380	140	25	99	56	150	90	89
Chramium	434	17	21	21 B	15 B	14 B	19 B	21 B	17 B	21 B
Copper	31.6		na	1,100	260	320	1,800	4,200	3,400	5,300
Lead	35.8	440	550	340	240	190	220	590	420	670
Selenium	-	<37 U	25B	<97	<9 7	<93	117	18	14	19
Silver	1	3.0	3.4	3.0 J	2.1 J	1.1 J	1.2	3.6	2.2	4.6
Zinc	121		43,000	14,000	3,500	8,900	16,000	23,000	25,000	26,000
Mercury	0.174	0.31	0.18	0.27	<0.21	0.085	0 11	0.32	0.19	0.36

Sample ID Date Collected Depth (ft - ft) .ocation	USEPA Region V Ecological Screening Levels (ESLs) (msRCa)	TWD-1-N-0-6 7/17/2007 0 - 0 5 (6-6") Old Cehokia Waterahed ^[5]	TWD-1-N-6-8 7/17/2007 0.5 - 0.66 (6-8") Old Cahokia Watershed ⁽⁹⁾	TWD-1-C-0-6 7/17/2007 0 - 0.5 (0-6") Old Cahokla Watershed ^[5]	TWD-1-C-8-10 7/17/2007 0.5 - 0.8 (6-10") Old Cahokia Watershed ⁽⁵⁾	TWD-1-S-0-6 7/17/2007 0 · 0 5 (0-6") Old Cahokia Watershed ^[5]	TWD-1-S-6-9.5 7/17/2007 0.5 - 0 75 (6-9.5") Old Cahokia Watershed ^[7]	TWD-02-N-0-6 7/17/2007 0 · 0.5 (0-6") Old Cahokia Watershed ⁵⁾	TWD-92-N-6-7 7/17/2007 0 5 - 0.6 (6-7") Old Cahokia Watershed ⁽³⁾	TWD-02-C-0-6 7/17/2007 0 - 0.5 (0-6") Old Cahokia Watershed ^[5]	TWD-02-C-6-9 7/17/2007 0 5 - 9.75 (6-9") Old Cahokis Watershed ⁽³⁾	TWD-02-C-6-9 DUP 7/17/2007 D 5 - 9.75 (6-9") Old Cahokia Watershed ^{Pl}
Arsenic	9.79	7.7	58	16	85	7.1	11	10	,	15	5.4	4.6
Barlum		250	250	230	260	420	450	250	240	200	310	280
Cadmium		55	4.1	44	16	90	15	32 V	44 V	71 V	17 V	12 V
Chromium	434	29 B	31 B	33 B	30 B	30 B	29 B	32 1	29 ^V	28 ^V		33 ^V
Copper		61 B	32 8	53 B	34 B	130 B	47 B	61	57 B	340 B		61 B
Iron		30,000	na	31 000	na	29,000		30,000 v	na	23,000 V	na	na
Lead	35.8	140	32	78	33	390	78	140	130	210	160	120
Manganese	_	710	na	580	na	540		650 v	na	690 V	na	na na
Selenium	-	1.5 J	14.1	16 J	12 J	2 J	13 J	1 J	1.3	<36	<1.4	11.1
Silver	1	0 58 J	031	0 35 J	0 24 J	1.5	0 41 J	0.48 J	0.43 J	1.1	0 56 J	0 37 J
Zinc		2,000 B	350 B	2,900	1,800 B	4,600 B	1,800 B	1800 B	1800 B	12,000 B		1,900
Mercury	0.174	0.070	0 06	0 076	0 068	0.2	0 076	0 073	0.08	0.15	0 079	0 087
	1			I	i		I	ı			1	I

V Serial dilution exceeds the limits

CV CCV, ICB, CCB, ISA, ISB, CRI, CRA or MRL standard, instrument related to QC exceeds the control limits.

Notes: BOLD values indicate the value exceeds the EPA Region V ESLs

- BOLD Values indicate the value exceeds the EPA Region V ESLs no not analyzed.

 8. Compound found in blank and sample

 9. Compound delected at concentration below reporting limit but above the MDL and therfore is an approximate value.

 9. Compound delected above MDL

 9. Compound not delected above MDL

 9. Such location of the separation of the separatio

Table 5-1 continued Concentrations of 8 RCRA Metals, Copper, Zinc (mg/Kg) and Detected Pacificide Compounds (ug/Kg) in Sediment Samples Compared to Ecological Screening Levels Old American Zinc Plant Site, Fairmont City, Illinois

Sample ID Date Collected Depth (it - it) Location	USEPA Region V Ecological Scraming Levels (ESLa) ImpR(a)	TWO-42-S-0-8 7/17/2007 0 - 0.5 (0-6") Old Cahokla Watershed ^[5]	TWD-02-8-6-8 7/17/2007 0.5-0.66 (6-6") Old Cahokia Waterahed ⁽²⁾	TWD-03-N-0-6 7/17/2007 0 - 0.5 (0-6") Old Cahokia Waterahed ^[5]	TWD-03-N-6-9 7/17/2007 9.5 \ 0.66 (6-8") Old Cahokie Watershed ⁽³⁾	TWD-03-C-0-8 7/17/2007 0 - 0.5 (0-6") Old Cahokia Watershed ^[5]	TWD-03-C-8-8.5 7/37/2007 0.5 - 0.66 (6-8.5") Old Cahokia Watershed ^[3]	TWD-03-S-0-6 7/17/2007 0 - 0.5 (0-6") Old Cahokia Watershed ^{DI}	TWD-03-5-8-8 7/17/2007 0.5 - 0.6 (6-8") Old Cahokia Watershed ⁽⁹⁾	TWD-03-8-10-12 7/17/2007 0.83 - 1.0 (10-12") Old Cahokia Watershed ^[8]	TRC-1-N-0-6 7/18/2007 0 - 0.5 (0-6") Old Cahokia Watershed ⁽⁶⁾	TRC-1-N-6-8 7/18/2007 0.5 - 0.66 (6-8") Old Cahokia Watarahed ^(R)
Arsenio Barium		5 9 320	7 8 460	7.7 230	7.1	7 3	6.1	10	6.2	4.4	56	5.3
Cadmum		320 148 V	46U 34 V	23U 28 V	220	270	310	210	320	280	330	290 4,1
Chromium		31 1	34 V 32 V	30 1	18 V	25 V 29 ^V	21 V 28 ^\	23 V	20 V	19 V	13 24	4,1
	31.8				28 °V			20 *V		29 °V	24 37 B	
Соррен		790 B	91 B	51 B	35 B	75 B	59 B	79 B	42 B	41 B		28 (
lron		27,000 V	ra na	27,000 V	na		па	18.000 V		па	25,000	na
Lead		260	210	130	52	180	140	150	59	48	38 B	21 E
Manganese		570 V	na	750 ∨	na		na	330 V		na	480	na
Selenium	4	<2.1	<15	1 J	16	2 J	0 69 J	16 J	12 J	084 J	13 J	12 .
Silver	1	1.2	0 52 J	049 J	0 16 J	0 62 J	05 J	0 78 J	<0.74	< 0.75	<0.96	<0.81
Zina		16,000	3,704 B	1,900 B	1,200 B	2,700	1,300 B	2,400 B	1,300 B	1,306 B	680 V,B	440
Mercury	0.174	0 13	0 095	0.063	0 055	0.11	0 067	01	0 072	0 067	0 11	0 052
				1			t			1	'	

Sample ID Date Collected, Depth (ft - ft) Location	USEPA Region V Ecological Screening Levels (ESLs) (mg/Kgl)	TRC-1-S-0-6 7/19/2007 0 - 0.5 (0-6") Old Cahokia Watershed ⁽⁸⁾	TRC-1-S-0-6-D 7/19/2007 0 - 0.5 (0-6") Old Cahokia Watershed ⁽⁸⁾	TRC-1-S-6-8 7/19/2007 0.5 - 0.66 (6-6") Old Cahokia Watershed ⁽⁶⁾	TRC-2-N-0-6 7/18/2007 Old Cahokia Watershed ⁽⁸⁾	TRC-2-N1-0-6 7/17/2007 Old Cahokia Watershed ⁽⁸⁾	TRC-2-N1-6-8 7/18/2007 0.5 - 0 66 (6-8") Old Cahokia Watershed ⁽¹⁾	TRC-2-C-0-6 7/18/2007 0 - 0.5 (0-6") Old Cahokia Watershed ⁽⁸⁾	TRC-2-C-10-12 7/16/2007 0.83 - 1 0 (10-12") Old Cahokia Watarshed ⁽⁴⁾	TRC-2-S-0-6 7/18/2007 0 - 0 5 (0-6") Old Cahokia Watershed ⁽ⁿ⁾	TRC-2-5-8-10 7/18/2007 0.66 - 0.83 (8-10") Old Cahokia Watershed ^{RI}	TRC-2-S-12-14 7/18/2007 1.0 - 1.16 (12-14") Old Cahokia Watershed ⁽⁹⁾
Arsenic	9.79	19	19	6.1	23	69	18	56	3.7	160	360	570
Barium	_	270	340	290	160	170	180	310	250	400	490	660
Cadmium	0.99	8.1	7.4	7.4	<0 22	<0.25	<0.29	4.8	0 26 J	1,300 V	2,190 V	140 V
Chromium	43 4	26	26	22	8.3	14	15	23	18	63	80	110
Copper	31.8	36 B	35 B	25 B	64 B	16 B	15 B	31 B	22 B	430 B	520 B	2,500 B
Iron	-	29,000	27.000	na	8.900	17 900	na	25,000	na na	57,000 V	na	
Lead	35 a	75 B	72 B	17 B	9 8	11 B	12 B	33 B	16 B	1,600	2,100	5,500
Manganese	-	470	380	na	120	620	na	560	na	280 V	na	ì
Selenium		16 J	13 J	13 J	<1 t	06 J	11 J	18 J	0.85 J	10 B	12	25
Sriver	1	<0.88	<0.84	<0.83	<0.56	<0.64	<0.72	0 22 J	<0.67	12	15	55
Zinc	121	740	740	700 B,V			54 ,V	240 B	79 V B	15,000	20,000	6,600
Mercury	0 174	0 14	0.19	0 034	0 02 J	0 033	0 03	0 051	0 042	11	14	120

Region V Old Cahoku Old Cahoku Old Cahoku Old Cahoku Screening Levris (EBa) Levris (EBa) ImmVol ImmVol Old Cahoku Waterahed ImmVol Old Cahoku Old Cahoku		Watershed ^(e)			upgradient of Rose Creek discharge area, adj to Milam Landfill	upgradient of Rose Creek discharge ørea, adj to Milam Landfill	upgrädient of Rose Creek discherge area, adj to Milam Landfill
Arsenic 8.79 61 1.6 1.9	2 12		44	94	75	110	79
Barium - 320 74 120	49 300		220	250	400	290	520
Cadmium 0.99 290 0.48 0.1 J	<0.25 36		22	72	100	330	75 59
Chromium 43.4 48 6 83 Copper 31.6 460 B 6 B 7.2 B	4.6 43		18 29 B	20 41 B	49 98 B	110 160 B	600 B
Copper 31.6 460 B 6 B 7.2 B	2.8 B 230 na 29,000.0		20,000	41 B	37,000	160 B	000 B
Lead 35.8 1,200 B 7.1 B 9 B	na 29,000.0 4 2 8 79	30	20,000 58 B	92 8	300 B	650 B	1,600 B
Manganese - 550 74 100	na 420		530	na	330	na na	na
Salenium - 5.6 <14 <13	<1.2 1.4		111	19	35	4 1	14
Silver 1 12 <0.68 <0.64	<0.62 0.29		<0.67	0 18 J	2.2	3.6	25
Zinc 121 8,600 42 47 B,V	19 B.V 1,100		780	1100 B,V	1,900 B,	3100 B,V	1,600 B,V
Mercury 0.174 3.4 0.014 J 0.0091 J	0.068 0.18	0 073	0 13	0 077	2	5.3	18

V Serial dilution exceeds the limits

- ICV, CCV, ICB, CCB, ISA, ISB, CRI. CRA or MRL standard Instrument related to QC exceeds the conrol limits

- Motes:

 BOLD vielus indicate the value groeds the EPA Pegon V ESLs
 as not energyted

 Compound found in black and sample

 CV Serial (Bullion exceeds the
 CV, CCV, ICB, CCB, ISA,
 COmpound dound in black and sample

 CV CCV, ICB, CCB, ISA,
 COMPounds background samples

 CV CCV, ICB, CCB, ISA,
 CV, ICB, ICB, ICB, ICB,
 CV, ICB, ICB, ICB,
 CV, ICB, ICB, ICB,
 CV, ICB, ICB, ICB,
 CV, ICB, ICB, ICB,
 ICCV, ICB, ICB,

Table 5-1 continued

Concentrations of 8 RCRA Metals, Copper, Zinc (mg/Kg) and Detected Pesticide Compounds (ug/Kg) in Sediment Samples Compared to Ecological Screening Levels
Old American Zinc Plant Site, Fairmont City, Illinois

Sample ID: Date Collected Depth (ft - ft)		80-52 7/19/2007 0 - 0.5 (0-6")	RSD-1 7/17/2007 0-0.5 (0-6")	RSD-2 7/17/2007 0-0.5 (0-6")	RBD-3 7/17/2007 0-0.5 (0-8")	RSD-4 7/17/2067 0-0.5 (0-6")
Location	USEPA Stugion V Enological Screening Levels (ESLs) (matKal)	Schoanberger Creek - west of Old Cahokia wastern boundary	Rose Creek Upstream of Facility, east of Kingshighway & south of General Chemical	Rose Creek - Upstream of Facility, east of Kingshighway & south of General Chemical	Rose Creek - Upstream of Facility, west of Kingshighway & south of Former Swift Ag Chem	Rose Cresk - Upstream of Facility, west of Kingshighway & south of Former Swift Ag Chem
Arsenic	9.79	26	16	21	49	23
Barium	4	260	240	320	120	380
Cadmium		80 V	4.9	9.9	5	9.9
Chromium		630	53 B	59 B	90 B	91 B
Соррег	316	75 B	210 B	250 B	140 B	340 B
Lead		180	620	780	380	630
Selenium	7	17 J	2.7	21	0.73 J	23
Silver Zinc	121	1.1 1.800 B	2.1 710	2.3 1300	2.4 820 B	2.9 1600 B

- Notes:

 SOLD values indicate the value exceeds the EPA Region V ESLs
 as not analyzed
 A CV, CCV, ICB CCB, ISA.

 V Serial district exceeds the CV, CCV, ICB CCB, ISA.

 U or <: Compound found in blank and sample.

 A CV, CCV, ICB CCB, ISA.

 U or <: Compound not detected above MDL.

 Denotes bendered at foundation helow reporting limit but above the MDL and thefore is an approximate value.

 U or <: Compound not detected above MDL.

 Denotes bendergound extense above MDL.

 Denotes bendergound extense in the Illinias Concentrations of Inroganic Chemicals in Background Solts for MSA Counties (Includes St. Clear) per 35 IAC 742, Appendix A. Table G.

 [2] Sample collected at well readow (welland) between West Dicth Outsit and open water hablet in the Caholice Creek Watershad.

 [4] Reference samples were collected in the open water habital of the Coloids Creek Watershad (incriteast of SW-24)

 [5] Open water are in western point on the Cold caholic Creek Watershad (incriteast of SW-24)

 [5] Open water habital of the Coloids Creek Watershad (incriteast of SW-24)

 [5] Open water habital of Intercept Caholic Creek Watershad (incriteast of SW-24)

 [6] Welland and well meadow area in western hall of Old Cahokia Creek Watershed beyond Rose Creek discharge area

- V Serial dilution exceeds the limits

 ^ ICV, CCV, ICB CCB, ISA, ISB, CRI, CRA or MRL standard instrument related to QC exceeds the conrol limits.

Table 5-2 Concentrations of Total and Dissolved Metals (mg/L) and Detected Organic Compounds (ug/L) in Surface Water Samples Compared to Ecological Screening Levels Old American Zinc Plant Site, Fairmont City, Illinois

Sample ID: Date Collected: Location	EPA Region V Ecological Screening Criteria ^[1] (mg/L)	SW-01 5/31/2006 East Ditch 1	SW-05 5/31/2006 East Oltch 1	SW-06 5/31/2006 East Ditch 1	SW-07 6/2/2006 West Ditch 2	SW-07-FD 6/2/2006 West Ditch 2	SW-08 5/31/2006 Rose Creek	SW-10 6/12/2006 Rose Creek	SW-11 6/12/2006 Rose Creek	SW-12 6/12/2006 Rose Creak	SW-12/FD 6/12/2006 Rose Creek	SW-13 6/12/2006 Rose Cresk
Total Arsenic	0.148 (n	0.022	<0.010 U	<0.010 U	0 0030 B	<0.010 U	<0.010 U	0.012	0.0055 B	0.0046 B	<0.010 U	<0.010 U
Total Banum	0.22 (I,j,k)	0.39	0.011	0.010	0,089	0.090	0.067	0.012	0.054	0.10	0.086	0.071
Total Cadmium	0 00015 (i.j.k)	0.094	0.0027	0.0086	0.009	0.030	0.055	0.094	0.0059	0.0036	0.0024	0.0040
Total Chromium	0.042 (l.k)	0.019	<0.0027 <0.010 U	0.0088 0.0014 B	<0.010 U	<0.010 U	0.0037 B	0.0064 B	0.0034 B	0.0056 B	0.0040 B	0.0017 E
Total Copper	0.00158 (j. k. z)	na	na void	na D	na vooro	na vo	0.0037 B	0.0004 B	0.0024 C	0.0030 B	na c.cc+o	na c
Total Lead	0.00117 (Jk.z)	0.27	0.0076	0.043	0.25	0.21	0.20	0.16	0.013	0.050	0.029	0.0033 B
Total Selenium	0.005 (1)	<0.010 U	<0.010 U	<0.010 U	<0.010 U	<0.010 U	<0.010 U	<0.010 U	<0.010 U	<0.010 U	<0.010 U	<0.010 L
Total Silver	0.00012 (f,z)	0.0046 B	<0.0050 U	<0.0050 U	<0.0050 U	<0.0050 U	<0.0050 U	0.0012 B	<0.0050 U	<0.0050 U	<0.0050 U	<0.0050 L
Total Zinc	0.0657 (Jkz)	5.5	0.28	0.47	41	42	3.1	6.1	0.65	0.60	0.38	0.38
Total Mercury	0.0000013 (a)	0.0013	<0.00020 U	0.00027	<0.00020 U	<0.00020 U	0.00067	0.00017 B	<0.00020 U	<0.00020 U	<0 00020 U	<0.00020 L
Dissolved Arsenic	0.148 (f)	0.0074 B	<0.010 U	<0.010 ∪	<0.010 U	<0.010 U	0.0022 B	0.0078 B	0.0045 B	0 0028 8	0.0029 B	<0.010 U
Dissolved Barium	0.22 (I.J.k)	0.0074 01	0.0061 B	0.0060 B	0.086	0.086	0.0022 6	0.0078 6	0.0045 8	0.060	0.0029 8	0.060
Dissolved Cadmium	0.00015 (1.j.k)	<0.0020 U	-0.002 U	<0.0020 U	0.000	0.17	<0.012	0.034	0.0040	0.00056 B	0.00060 B	0.00087 E
Dissolved Chromium	0.042 (j,k)	<0.010 U	<0.010 U	<0.010 U	<0.010 U	<0.010 U	<0.010 U	<0.010 U	<0.010 L	<0.010 U	<0.010 U	<0.010 L
Dissolved Copper	0.00158 (j. k. z)	na	na na	na o	na	na	na na	na na	na .	na na	na	na
Dissolved Lead	0.00117 (J.k.z)	0.0028 B	<0.0050 U	0.0035 B	0.041	0.038	<0.0050 U	<0.0050 U	<0.0050 L	<0.0050 U	<0.0050 U	<0.0050 \
Dissolved Selenium	0.005 (i)	<0.010 U	<0.010 U	<0.010 U	<0.010 U	<0.010 U	<0.010 L	<0.010 U	<0.010 L	<0.010 U	<0.010 U	<0.010
Dissolved Silver	0.00012 (f.z)	<0.0050 U	<0.0050 U	<0.0050 U	<0.0050 U	<0.0050 U	<0.0050 U	<0.0050 U	<0.0050 U	<0.0050 U	<0.0050 U	<0.0050 L
Dissolved Zinc	0.0657 (j.k.z)	0.021	0.037	0 0089 B	36	35	0.015 B	1.6	0.46	0.098	0.090	0,27
Dissolved Mercury	0.0000013 (a)	<0.00020 U	<0.00020 U	<0.00020 U	<0.00020 U	<0.00020 U	<0 00020 U	<0.00020 U	<0.00020 U	<0.00020 U	<0.00020 U	<0 00020 L
Hardness, as CaCO ₃		85 1"	100 "	na	na	na	na	110 14	na	na	na	na

Sample ID: Date Collected: Location	EPA Region V Ecological Screening Criteria ^[1] (mg/L)	SW-17 6/12/2006 Rose Creek Outfall	SW-41 12/12/2006 Rose Creek	SW-41 Resample 7/19/2007 Rose Greek	SW-41-D 12/12/2006 Rose Creek	SW-41 D Resample 7/19/2007 Rose Creek	SW-42 12/12/2006 Rose Creek	SW-42 Resample 7/18/2007 Rose Creek	SW-43 12/12/2006 Rose Creek	SW-43 Resample 7/18/2007 Rose Creek	SW-44 12/12/2006 Rose Creek	SW-44 Resample 7/18/2007 Rose Creek
Total Arsenic Total Barnum Total Cadmium Total Copper Total Copper Total Lead Total Selenum Total Silver Total Zinc Total Mercuy	0.00015 (i,ik) 0.042 (i,ik) 0.00158 (i, k, z) 0.00117 (i,k,z) 0.005 (i) 0.00012 (i,z) 0.0657 (i,k,z)	<0.010 U 0.078 0.0090 0.0033 B na 0.023 <0.010 U <0.0050 U 0.79 0.00098 8	0.045 0.21 0.0016 0.016 0.012	0.012 0.051 0.051 0.051 0.010 0.019 0.011 0.0021 J.B 11 B	<0.010 0.050 0.18 0.0022 J 0.017 0.014 <0.010 <0.0050 27 <0.0002	0.0078 J 0.049 0.04 <0.010 0.017 0.010 <0.010 0.022 J.B 6.3 B		No Water in creek at this location	<0.010 0.063 0.0079 0.0048 J 0.022 0.017 <0.010 <0.050 1.1 <0.00020	<0.010 0.041 <0.0020 <0.010 0.0039 J <0.010 0.0024 J <0.010 0.0015 J,B 0.15 B <0.0020	<0.010 0.072 0.011 0.0042 J 0.02 0.018 <0.010 <0.0050 1.6 <0.00020	0.021 0.045 0.0037 <0.010 0.0053 J <0.0050 <0.010 0.007 J,8 0.056 B <0.0020
Dissolved Arsenic Dissolved Barum Dissolved Cadmium Dissolved Chromium Dissolved Copper Dissolved Lead Dissolved Selenium Dissolved Sidvar Dissolved Mercury	0.148 (f) 0.22 (l,lk) 0.02015 (l,k) 0.00158 (l, k, 2) 0.00159 (l, k, 2) 0.0017 (l,k, 2) 0.00012 (l,c) 0.00013 (a)	0.0053 B 0.060 0.0055 B < 0.010 U < 0.010 U < 0.0050 U		<0.0020 <0.004 0.044 0.03 <0.010 0.0075 0.0050 <0.0050 4.2 3 <0.00020	SUJUUJEU	<.0.010 0.014 0.054 0.0310 0.0017 0.0088 J 0.0050 0.010 0.0012 J,B 4.2 8 <0.00020 	~0.00020		-0.0020	0.0036 J 0.031 <0.0020 <0.010 0.0035 J <0.0050 <0.010 0.0025 J,B 0.035 B <0.00000	3,300,20	0.019 0.04 0.001 J 0.0023 J 0.0032 J <0.050 <0.010 0.002 J,B <0.00020
Hardness, as CaCO ₃		na		na				*		na		па

NOTES:

NOTES:
**DISTANCE OF THE PROPERTY OF THE PROPERTY

- Sch Creek = Schoenberger Creek

 [1]. U.S EPA Region V. RCRA Ecological Screening Levels. August 22, 2003
 a derived from Michigan water quality standards, Rule 57 water quality values.
- f. derived from Minnesota water quality standards Rule 7050.0100, Subpert 2 (water ESL data for arsenic and benzene represents equalic life chronic standards and dioxin. DDT, mercury and PCBs represent wildlife values) April 13, 2000 Rule 7050 0222 Subpert 2. j. USEPA national recommended water quality criteria: 7002 (EPA 822-R-02-047)
- k for hardness dependent metals (Cd, Cr⁻³, Cu, Pb. 7n) freshwater chronic criteria are based on a defualt total hardness value of 50 mg/L as CaCO3. This surface water ESL has been recalculated using measured site specific hardness values 2. New ESL is lower than the previous table.
 [2] Samples for analysys of hardness were collected on June 29, 2006.

Table 5-2 continued Concentrations of Total and Dissolved Metals (mg/L) and Detected Organic Compounds (ug/L) in Surface Water Samples Compared to Ecological Screening Levels Old American Zinc Plant Site, Fairmont City, Illinois

Sample ID: Date Collected: Location	EPA Region V Ecological Screening Criteria ⁽¹⁾ (mg/L)	SW-24 6/1/2006 West Ditch 1	SW-20 6/13/2006 Sch. Creek	SW-20/FD 6/13/2006 Sch. Creek	SW-21 6/12/2006 Sch. Creek	SW-22 6/13/2006 Sch. Creek	SW-36 6/29/2006 Sch. Creek	SW-37 6/29/2006 Sch. Creek	SW-34 6/28/2006 Cahokia Watershed ^M	SW-34-D 6/28/2006 Cahokia Waterahed ^[4]	SW-38 12/12/2006 Reference ⁽⁵⁾	SW-38 Resample 7/18/2007 Reference ⁽⁵⁾
Total Arsenic	0.148 (f)	0.0065 B	<0.010 U	<0.010 U	0.020	<0.010 U	0.0057 B	0.0048 B	0.046	0 074	<0.010	0.01
Total Banum	(بدزا) 0.22	0.046	0 10	0.11	0.80	0.10	0.17	0.15	0.69	1.1	0 055	0.11
Total Cadmium	0.00015 (i.j.k)	0.012	<0.0020 U	<0.0020 U	0.043	<0.0020 U	0.00069 B	0.00091 B	1.3	2.2	0.27	0.038
Total Chromium	0.042 (法)	<0.010 U	0 0020 B	0.0025 B	0.17	0.0033 B	0.0035 B	0.0061 B	0.059	0.10	0 0022 .	0.0034
Total Copper	0.00158 (j. k. z)	na	ra	na	na	na	na	na	na na	na	0.033	0.140
Total Lead	0.00117 (j.k.z)	0.0094	<0.0050 U	0.0032 B	0.23	0.0052	0.0078	0.0094	1.4	2.4	< 0.0050	0.022
Total Selenium	0.005 ()	<0.010 U	<0.010 U	<0.010 U	<0.010 U	<0.010 U	<0.010 U	<0.010 U	0.0087 ₿	0.012	<0.010	< 0.010
Total Silver	0.00012 (f.z)	<0.0050 U	<0.0050 U	<0.0050 ∪	<0.0050 U	<0.0050 U	<0.0050 U	<0.0050 U	0.011	0.017	< 0.0050	0.0029 J,B
Total Zinc	0.0657 (j.k.z)	24	0.013 B	0 024	1.6	0.021	0.045	0.051	160	250	51	5.3 B
Total Mercury	0.0000013 (a)	<0.00020 U	<0.00020 U	<0 00020 U	0.00079	<0.00020 U	0.00011 B	<0.00020 U	0.00058	0.00045	<0.00020	<0.00020
Dissolved Arsenic	0.148 (f)	0.0023 B	0.0042 B	0.0056 B	0.0042 B	<0.010 U	<0.010 U	<0.010 U	0.0030 B	<0.010 U	İ	0.0034
Dissolved Banum:	0.22 (IJ.k)	0.044	0.082	0.081	0.13	0.082	0.14	0.11	0.072	0.082		0.042
Dissolved Cadmium	0.00015 (i.j.k)	0.0074	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U		<0.0020
Dissolved Chromium	0.042 (j.k)	<0.010 U	<0.010 ∪	<0.010 U	<0.010 U	<0.010 U	0.0017 B	0.0013 B	0.0019 B	<0.010 U		0.0033
Dissolved Copper	0 00158 (j. k, z)	na	na	na	na	na	na	na	na	na	ŀ	0.003
Dissolved Lead	0.00117 (j.k.z)	0.0039 8	<0 0050 U	<0.0050 ∪	<0.0050 U	<0.0050 U	<0.0050 U	<0.0050 U	<0.0050 ป	<0.0050 ∪		< 0.0050
Dissolved Selenium	0.005 ()	<0.010 U	<0.010 U	<0.010 U	<0.010 U	<0.010 U	0.0078 B	<0.010 U	0.0049 8	0.0047 B		<0.010
Dissolved Silver	0.00012 (1.2)	<0.0050 U	<0 0050 U	<0.0050 U	<0.0050 U	<0.0050 U	<0 0050 U	<0.0050 U	<0.0050 U	<0.0050 U	{	0 0029 J.8
Dissolved Zinc	0 0657 (j.k.z)	19 (0.0078 B	<0.020 U	0.0079 B	0.012 B	0.012 B		0.057	0.063	ì	0.079 E
Dissolved Mercury	0.0000013 (a)	<0.00020 U	<0.00020 U	<0.00020 ປ	<0.00020 U	0.00013 B	<0.00020 U	<0.00020 U	<0.00020 U	<0.00020 U	1	<0.00020
Hardness, as CaCO ₃		na	na	na .	na	па	220	170	590	720	na	l na

Sample ID: Date Collected;	EPA Region V Ecological	SW-39 12/12/2006	SW-39 Resample 7/18/2007	SW-40 12/12/2006	SW-40 Resample 7/18/2007	SW-45 12/12/2006	SW-45 Resample 7/18/2007	SW-50 12/12/2006	SW-52 12/12/2006	SW-TRC-3-S 7/19/2007 West end of Old
Location	Screening Criteria ⁽¹⁾ (mg/L)	Reference ^[3]	Reference ⁽⁵⁾ - 40 feet east of SW-38	Reference ⁽⁵⁾	Reference ⁽⁵⁾ - 75 feet east of SW-38	Cahokia Wetland ^[3] - south of open water shoreline	Cahokia Wetland ^[3] - south of open water edge	Cahokia Watershed Upgradient of Rose Creek Discharge Area	Schoenberger Creek - west of Old Cahokia Watershed	Cahokia Watershed, adjacent to Schoenberger Creek channel
Total Arsenic	0.148 (f)	<0.010	<0.010	<0.010	<0.010	<0.010	No Water in discharge	0 0059	0 0039 J	0.018
Total Barrum	0.22 (I,J.k)	0 048	0 063	0 053	0 14	0.043	channel at this	0.045	0 15	0.29
Total Cadmium	0.00015 (i.j,k)	0.17	< 0.0020	0.20	0.006	0.99	location	< 0.0020	<0.0020	0.034
Total Chromium	0 042 (j.k)	0 0014 J	<0.010	0.0018 J	0.0019 J	0.0027	ગી ા	<0.010	0.0052 J	0.01
Total Copper	0 00158 (), k, z)	0.030	0 008 J	0.025	0.0072 J	2.0	4	0 0018 J	0.0038 J	0 042
Total Lead	0.00117 (j.k.z)		<0.0050	<0.0050	<0.0050	0.0070	1	0.0022 J	0.0057	0.074
Total Selenium	0.005 ()	<0.010	<0.010	< 0.010	<0.010	<0.010	1	<0.010	<0.010	<0.010
Total Silver	0.00012 (f.z)	< 0.0050	0.0014 J.B	0.0016 J	0.0025 J.B		가	<0.0050	0.0019 J,B	0.0012 J.B
Total Zinc	0.0657 (j.k.z)	47	0.25 B	47	2.6 B	260	1 1	0 02 J.B	0.035 B	1.3 B
Total Mercury	0.0000013 (a)	<0 00020	}	<0.00020	<0.00020	<0 00020	1	<0.00020	<0 00020	0.00036
Dissolved Arsenic	0.148 (f)		<0.010		<0.010	Ì		<0.010	<0.010	<0.010
Dissolved Banum	0.22 (I.J.k.)		0.053		0.065		1 1	0.036	0 032	0.11
Dissolved Cadmium	0.00015 (i į.k)	ı	<0.0020		<0.0020	!	1 1	<0 0020	<0.0020	< 0.0020
Dissolved Chromium	0 042 (j.k)		<0.010		<0.010		1	<0.010	< 0.010	< 0.010
Dissolved Copper	0.00158 (j. k. z)	1	<0.010		<0.010			<0.010	<0.010	< 0.010
Dissolved Lead	0.00117 (j.k.z)		< 0.0050		< 0 0050			< 0.0050	<0.0050	<0.0050
Dissolved Selenium	0.005 ()		<0.010		<0.010	1	1 1	<0.010	<0.010	<0.010
Dissolved Silver	0 00012 (f.z)		<0.0050		0.0013 J,B		1 1	<0.0050	<0.0050	<0 0050
Dissolved Zinc	0.0657 (j.k.z)		0 014 J.B		0.019 J,B	l	1 1	0.0052 J.B	0.01 J,B	0.0088 J,B
Dissolved Mercury	0.0000013 (a)		<0.00020		<0 00020			<0.00020	<0.00020	<0.00020
Hardness, as CaCO₃		па	na	na	na	na	ļ +	na	na	(

NOTES:
Black BOLD values indicate exceedences of EPA Region V, RCRA Ecological Screening criteria

U or <. Compound not detected above MDL

J Compound detected at concurration below reporting limit

Sch. Creek = Schoenberger Creek

It. U.S. EPA Region V, RCRA Ecological Screening Levels. August 22, 2003 a: derived from Michigan water quality standards, Rule 57 water quality values

- derived from Minnesota water quality standards Rule 7050.0100. Subpert 2 (water ESL data for arsenic and benzene represents equalic life chronic standards and dioxin, DDT, mercury and PCBs represent widdle values April 13, 2000 Rule 7050 0222 Subpert 2 J. USEPA inholonal recommended water quality critimas 7002 (EPA 822-R-02-047)

- k for hardness dependant metals (Cd. Crt.3, Cu. Pb. Zn) freshwater chronic critiene are based on a defualt total hardness value of 50 mg/L as CaCO3. This surface water ESL may
- be recalculated when site specific hardness values are available.

 z New ESL is lower than the previous table.

- 2.3 Sample collected in well meadow (welfand) between West Ditch Outfall and open water habital in the Cahokia Creek Watershed (4) Samples collected in well meadow (welfand) between West Ditch Outfall and open water habital in the Cahokia Creek Watershed downgradent of West Ditch discharge (5) Reference samples were collected in the open water habital of the Old Cahokia Creek Watershed (northeast of SW-34).

Table 5-3
Physical Appearance of Sediments and Bioassay Results
FORMER OLD AMERICAN ZINC PLANT
FAIRMONT CITY, ILLINOIS

Sediment Identification	Location	Description (Prior to Bioassay)	Percent Survival
Laboratory Control		Shredded brown paper toweling	87.5
		Dark clayey loam with decaying vegetation, no odor,	
	North end of East Ditch #1.	no oily sheen, oligochaetes and three midges were	
SD-CT-01 (Field Control)		removed.	00
	Confluence of East Ditch #1 with	Dark brownish clay with decaying vegetation, no odor	
	East Ditch #2.	or oily sheen, rust-iron layer, no macroinvertebrates	
SD-CT-05	Last Ditori #2.	were observed.	00
. —	In East Ditch #1, south of East	Dark clayey loam with decaying vegetation,	
SD-CT-06	Ditch #2 confluence.	oligochaetes and two midges were removed.	0 (1 midge)
	Rose Creek, just west of East		
	Ditch #1 confluence.	Black clayey silt with decaying vegetation, no odor or	1
SD-CT-08		oily sheen, some oligochaetes were removed.	0
	Rose Creek, approximately 4500		
	feet downstream (west) of		
	confluence with West Ditch #1 and	Grayish clay silt, less vegetation, no odor or oily	
SD-CT-13*	#2	sheen, no macroinvertebrates were found.	0
	West Ditch Outfall#1, edge of		
	open pond in Old Cahokia Creek	Black clay with duck weed (Lemna sp.) and other]
	Watershed, approximatey 350 feet	vegetation, no odor or oily sheen, some oligochaetes	<u> </u>
SD-CT-34	NW of 29.	were found.	0
	Shoenberger Creek, at northern-		
	most discharge structure draining	Black clay with big pieces of twigs and some	
	water from watershed on the NE	decaying vascular plant material, no odor or oily	
SD-CT-36	side of the creek.	sheen, a few oligochaetes were removed.	00

^{*} The sediment sample for chemical analysis designated SD-13 was collected from the ditch just to the southeast of the road (e.g., roughly 200 feet downgradient).

TABLE 5-4 SUMMARY OF ANALYSES OF BENTHIC MACRO-INVERTEBRATE TISSUE (BT) SAMPLES AND CO-LOCATED SEDIMENT (SD) SAMPLES FORMER OLD AMERICAN ZINC PLANT FAIRMONT CITY, ILLINOIS REMEDIAL INVESTIGATION/FEASIBILITY STUDY

ID	BT-SD-001*	SD-01-0.5	BT-SD-005	SD-05-0.5	BT-SD-006	BT-SD-006DUP	BT-SD-006 (average)	SD-06-0.5	BT-SD-008	SD-08-0.5
Location	East Ditch	East Ditch	East Ditch	Rose Creek	Rose Creek (at-					
ANALYTE	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Arsenic	0.41	17	0.46	130	0.36 U	0.35 U		8.5	0.37 U	29
Barium	0.89	240	0.65	480	0.42 U	0.41 U		200	3.0	380
Cadmium	0.46	130	0.9	270	0.077	0.069	0.073	61	2.2	460
Chromium	0.15	33	0.19	24	0.1 U	0.098 U	1	14	0.16	74
Lead	2.4	870	2.1	3,300	0.17	0.36	0.265	100	4.9	1,700
Mercury	0.029	6.1	0.015 U	8.8	0.013 U	0.015 U		2.2	0.013 U	6.4
Selenium	0.74	4.5	1.1	5.4	1.0	0.87	0.935	1.7	0.69	5.5
Silver	0.15 U	29	0.15 U	64	0.15 U	0.15 U		1.2	0.16 U	17
Zinc	24.6	10,000	50.0	18,000	22.1	18.3	20.2	2,600	169	25,000

ID	BT-SD-013	SD-13-0.5	BT-SD-022	SD-22-0.5	BT-SD-034	SD-034	BT-SD-036	SD-36	BT-SD-037	SD-037
Location	Rose Creek	Rose Creek	Shoenberger	Shoenberger	West Ditch Outfall	West Ditch Outfall	Shoenberger	Shoenberger	Shoenberger	Shoenberger
ANALYTE	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Arsenic	0.62	140	0.37 U	12	0.37 U	15	1.1	13	0.35 U	15
Barium	1.0	290	1.5	640	10.9	210	13.3	270	0.82	340
Cadmium	1.3	100	0.031 U	21	0.50	300	0.096	19	0.050	44
Chromium	0.21	31	0.37	250	0.1 U	17	0.18	53	0.20	230
Lead	1.4	680	0.32	230	0.22	440	0.50	70	0.15	150
Mercury	0.014 U	1.0	0.014 U	0.30	0.017 U	0.31	0.016 U	0.22	0.014 U	0.25
Selenium	0.88	2.4	0.82	1.3	0.49	1.85	0.72	0.89	0.62	1.8
Silver	0.15 U	1.8	0.16 U	0.86	0.16 U	3.0	0.15 U	0.23	0.15 U	0.96
Zinc	32.6	9,200	11.8	940	75.8	35,000	13.3	750	13.3	1,100

B - Analyte detected in laboratory control blanks

U - Analyte not detected at the Reporting Limit.

All results are on a dry weight basis.

^{*} On-facility upstream location

TABLE 5-5 SUMMARY OF ANALYSES OF PLANT TISSUE (PT) SAMPLES AND CO-LOCATED SEDIMENT (SD) SAMPLES FORMER OLD AMERICAN ZINC PLANT FAIRMONT CITY, ILLINOIS

ANALYTE	Approxima	pproximate Concentrations in Mature Leaf Tissue (ppm dwt) ⁴			PT-REF [1]	PT-SD-16	[2]	SD-16-0.5	PT-SD-31 ^[3]		PT-SD-31 (duplicate) [3]		SD-31-0.5	SD-45-0.54 ⁽³⁾
ANALITE	Deficient	Sufficient or Normal	Excessive or Toxic	Tolerable in Agronomic Crops	(mg/kg dw	rt)	(mg/kg dw	/t)	(mg/kg)	(mg/kg dwt)		(mg/kg dwt)		(mg/kg)	(mg/kg)
Arsenic]	1 - 1.7	5 - 10		0.35	U	0.35	U	8.2	0.35	U	0.36	U	8.0	15
Barium		-	500		5.9	В	3.9	В	220	4.2	В	3.5	В	220	210
Cadmium		0.05 - 0.2	5 - 30		0.93		3.2		1.1	4.0	П	3.7	ГП	32	56
Chromium		0.1 - 0.5	5 - 30		1.3	T	0.57	В	19	0.42	В	0.29	В	14	19
Lead		5 - 10	30 -300		0.27	В	1.7		33	1.3	П	0.9	ГΠ	52	220
Mercury			1-3		0.016	U	0.016	U	0.078	0.015	U	0.016	U	0.042	0.11
Selenium		0.01 - 2	5 - 30		0.45	В	0.56	В	<1.4	0.83	В	0.53	В	0.89	1.1
Silver		0.5	5 - 10		0.15	TU	0.15	U	0.24	0.15	U	0.15	U	0.24	1.2
Zinc	10-20	27-150	100 - 400	300	19.8	E	84.9	E	140	287	E	276	E	7,900	16,000

Bold indicates investigative sample tissue concentration exceeded reference tissue concentration.

- 1 Reference locations between Rose Creek and West Ditch Outfalls; no co-located sediment sample collected.
- 2 Rose Creek Outfall.
- 3 West Ditch Outfall; sediment data for SD-45 also presented because this location is more representative of the depositional environment and was close to the tissue sample location.
- 4 Kabata-Pendias, Alina and Henryk Pendias. 1992. Traces Elements in Soils and Plants, 2nd Edition. CRC Press, Boca Raton, FL.
- B Analyte detected in laboratory control blanks
- U Analyte not detected at the Reporting Limit. dwt = dry weight ppm = parts per million

Table 5-6 Benthic Macroinvertebrate Community Analysis Former American Zinc Plant Site Fairmont City, Illinois

							Sample Numbe					
			BT-SD-01	BT-SD-05	BT-SD-06	BT-SD-02	BT-SD-08	BT-SD-13	BT-SD-34	BT-SD-22	BT-SD-36	BT-SD-37
	_	Family MBI Tolerance Value	East Ditch 1 at ongin	East Ditch 1 at mouth of East Ditch 2	East Ditch 1 downstream of East Ditch 2	East Ditch 2 composite (1 sweep only)	Rose Creek at discharge of East Ditch 1	Rose Creek upstream of Collinsville Road	Shallow marsh discharge of West Ditch 1	Schoenberger Creek upstream of Collinsville Road	Schoenberger Creek at discharge of the Engineered Ditch	Schoenberger Creek downstream of discharge of the Engineered Ditcl
	ertebrates Observed						Sample Date					
Taxon	Common Name		6/27/2006	6/27/2006	6/28/2006	6/27/2006	6/28/2006	6/29/2006	6/28/2006	6/30/2006	6/29/2006	6/29/2006
Planorbidae	Orb snails		40	4.0	40	40	<u> </u>	•	•	40	40	40
Physidae	Pond snails	8	10	10	10	10	10	10	10	10	10	10
Lymnaeidae	Aquatic snails	6				4	_			2	2	1
Oligochaeta	Aquatic earthworms	8								3	11	22
Hirudinea	Leeches	10		1			2		2	2	2	2
Trombidiformes	Water mites		•		•		•			-		
Cambaridae	Crayfish	6		·						1		
Baetidae	Small minnow mayflies	4	10	10	10	10	10			10	10	10
Caenidae	Small square-gilled mayflies	7			1							
Coenagrionidae	Narrowwinged damselflies	9	10	10	10		10		f	10	10	10
Calopterygidae	Broadwinged damselflies	5					 	10				
Aeschnidae	Darner dragonflies	3	10	10	10		10	10		10	10	10
Libellulidae		9	2	2	1		10	10		4	10	
Belastomatidae	Skimmer dragonflies						 				•	-
	Giant water bugs			•			•		•	-	-	<u> </u>
Pleidae	Pygmy backswimmers		·•				 					
Nepidae	Water scorpions			•	•		<u> </u>			•		
Notonectidae	Backswimmers		<u> </u>	<u> </u>	•		<u> </u>			•		
Corixidae	Water boatmen		• .	١.			•					•
Gerridae	Water striders				•					•	•	
Hydrometridae	Marsh treaders		•							<u> </u>		
Mesoveliidae	Water treaders			•	•		•	•				
Dytiscidae	Predaceous diving beetles		•	•	•	•	•		•	•	•	•
Hydrophilidae	Water scavenger beetles		•	•				•			•	•
Haliplidae	Crawling water beetles		•							•		
Chironomidae	Non-biting midges	8	10	10	10		10	10		10		10
Culicidae	Mosquitoes						•	•			•	
Chaoboridae	Phantom midges	· · · · · · · · · · · · · · · · · · ·		•					1			
Ceratopogonidae	Biting midges	6	1	2	3					4	4	
Stratomyidae	Soldierflies			•			•				<u> </u>	İ
Tabanidae	Horseflies	6	-						†·		1 · · · i · · · ·	

Table 5-6
Benthic Macroinvertebrate Community Analysis
Former American Zinc Plant Site
Fairmont City, Illinois

					····	Sample Number	er —				
		BT-SD-01	BT-SD-05	BT-SD-06	BT-SD-02	BT-SD-08	BT-SD-13	BT-SD-34	BT-SD-22	BT-SD-36	BT-SD-37
Į						Sample Locatio	n				
	Family MBI Tolerance Value	East Ditch 1 at origin	East Ditch 1 at mouth of East Ditch 2	East Ditch 1 downstream of East Ditch 2	East Ditch 2 composite (1 sweep only)	Rose Creek at discharge of East Ditch 1	Rose Creek upstream of Collinsville Road	Shallow marsh discharge of West Ditch 1	Schoenberger Creek upstream of Collinsville Road	Schoenberger Creek at discharge of the Engineered Ditch	Schoenberger Creek downstream of discharge of the Engineered Ditch
Macroinvertebrates Observed						Sample Date					
Taxon Common Name		6/27/2006	6/27/2006	6/28/2006	6/27/2006	6/28/2006	6/29/2006	6/28/2006	6/30/2006	6/29/2006	6/29/2006
No. MBI organisms		53	55	55	24	62	40	12	66	<u></u>	55
MBI ^{3, 5}		6.49	6.55	6.44	6.00	6.94	6.00	8.33	6.70	6.67	6.58
			55.00	55.00	24.00	62.00	40.00	12.00	66.00	60.00	55.00
TBI ^{4, 5}		6.71	7.13	6.75	6.00	7.29	6.00	9.00	7.00	6.90	7.00
Total number of taxa_		16	16	15	5	16	88	5	18	16	13

Notes:

- 1. Family MBI tolerance values (t) are from Hilsenhoff, 1988 and Bode, 1988
- = taxon present, but has no MBI tolerance value
 - 2. A maximum of 10 organisms was used for MBI calculations, according to Hilsenhoff, 1998.
 - 3. Macroinvertebrate Biotic Index (MBI) = $\sum_{i,j} (N_i) / N_j$ where n_i = no. individuals in each listed taxon, t_i = tolerance rating for each listed taxon, and N_i = total no. of listed organisms counted (IEPA, 2002).
 - 4. Mean tolerance value (TBI)=∑t/T where t=tolerance value for each listed taxon and T=no. of listed taxa in the sample (from Lillie and Schlesser, 1994).

5. Biotic Index (MBI and TBI) Interpretation (from Hilsenhoff, 1987)

Value	Water Quality	Degree of Organic Pollution
0.00-3.50	Excellent	No apparent organic pollution
3.51-4.50	Very Good	Possible slight organic pollution
4.51-5.50	Good	Some organic pollution
5.51-6.50	Fair	Fairly significant organic pollution
6.51-7.50	Fairly poor	Significant organic pollution
7.51-8.50	Poor	Very significant organic pollution
8.51-10.00	Very Poor	Severe organic pollution

Table 5-7 Benthic Macroinvertebrate Community Indices Former American Zinc Plant Site Fairmont City, Illinois June 2006

No.of Taxa	Location	East Ditch 1 at origin	East Ditch 1 at mouth of East Ditch 2	East Ditch 1 downstream of East Ditch 2	East Ditch 2 composite (1 sweep only)	Rose Creek at discharge of East Ditch 1	Rose Creek upstream of Collinsville Road	Shallow marsh discharge of West Ditch 1	Schoenberger Creek upstreram of Collinsville Road	Schoenberger Creek at discharge of the Engineered Ditch	Schoenberger Creek downstream of discharge of the Engineered Ditch
16	East Ditch 1 at origin		0.69	0.71	0.38	0.69	0.33	0.28	0.65	0.56	0.62
16	East Ditch 1 at mouth of East Ditch 2	0.52		0.77	0.38	0.81	0.42	0.38	0.70	0.62	0.62
15	East Ditch 1 downstream of East Ditch 2	0.55	0.63		0.40	0.77	0.35	0.30	0.73	0.58	0.50
5	East Ditch 2 composite (1 sweep only)	0.24	0.24	0.25		0.38	0.15	0.40	0.43	0.38	0.44
16	Rose Creek at discharge of East Ditch 1	0.52	0.68	0.63	0.24		0.42	0.38	0.65	0.56	0.62
8	Rose Creek upstream of Collinsville Road	0.20	0.26	0.21	0.08	0.26		0.31	0.31	0.42	0.48
5	Shallow marsh discharge of West Ditch 1	0.17	0.24	0.18	0.25	0.24	0.18		0.43	0.48	0.56
18	Schoenberge r Creek upstreram of Collinsville Road	0.48	0.54	0.57	0.28	0.48	0.18	0.28		0.76	0.71
16	Schoenberge r Creek at discharge of the Engineered Ditch	0.39	0.45	0.41	0.24	0.39	0.26	0.31	0.62		0.69
13	Schoenberge r Creek downstream of discharge of the Engineered Ditch	0.45	0.45	0.33	0.28	0.45	0.31	0.38	0.55	0.53	

Jaccard's Coefficient = C/A+B-C

Community Similarity Index = S = 2C/(A+B)

where A = no. taxa in Sample 1

B = no. taxa in Sample 2

C = no. taxa common to both samples

TABLE 5-8 SUMMARY OF PLANT COMMUNITY STUDY FORMER OLD AMERICAN ZINC PLANT FAIRMONT CITY, ILLINOIS

Plant Community Metric			West Ditch	Outfall			Rose Creek Outfall				Reference			
!	Native Spec	ies Richness		Tota	Total Species Richness®		Native Species Richness		Total Species Richness®		Native Species Richness		Total Species Richness®	
<u> </u>	Plot 1	Plot 2	Plot 3 ^a	Plot 1	Plot 2	Plot 3ª	Plot 1	Plot 2 ^b	Plot 1	Plot 2	Plot 1°	Plot 2 ^d	Plot 1	Plot 2
Total Coefficient of Conservatism (Total C)	8	13	25	8	13	25	41	46	41	46	15	64	15	64
Number of native species (N)	2	3	10	2	3	10	16	21	16	16	6	22	6	22
Mean C	4	4.33	2.50	2.67	3.25	1.92	2.6	2.19	2.05	1.77	2.5	2.9	1.7	2.7
Floristic Quality Index (FQI)	5.7	7.51	7.91	4.62	6.50	6.93	10.3	10.04	9.17	9.02	6.1	13.6	5.0	13.1
Total number of native and non-native species (Total N)	3	4	13	3	4	13	20	26	20	26	9	25	9	25
Percent native species	66.7	75	76.9	66.7	75.0	76.9	80.0	80.8	80.0	61.5	66.7	88.0	66.7	88.0
Average FQI by Location		7.02			6.02		10.1		9.1		9.9		9	0.0

- a Closest to the stormwater outfall from West Ditch.
- a closest to the storniwater outlan from West Ditch.

 b Depositional environment most similar to West Ditch Outfall Plots 1 & 2 and Reference Plot c Plot location on landscape, hydrology, etc. compares most directly with West Ditch Outfall Plot #3 d Similar hydrology and topography to West Ditch plots 2 & 3 and Rose Creek plots.

 e FQI including adventives and non-natives.

Table 6-1
Summary of PEC-Quotients for Metals in Sediment Samples
Old American Zinc Plant Site, Fairmont City, Illinois

	Facility Drainage Ditch Investigative Samples	
Sample ID:	Location	Mean PEC-Q metals*
SD-01-0.5	East Ditch 1	11.05
SD-02-0.5	East Ditch 2	2.57
SD-05-0.5	East Ditch 1	24.53
SD-06-0.5	East Ditch 1	3.80
SD-07-0.5	West Ditch 2	19.83
SD-07-0.5/FD	West Ditch 2	14.54
SD-23-0.5	West Ditch 1	14.41
SD-23-0.5/FD	West Ditch 1	14.63
SD-24-0.5	West Ditch 1	52.11
SD-25-0.5	West Ditch 1	9.20
SD-25-0.5/FD	West Ditch 1	72.41
SD-26-0.5	West Ditch 1	13.12
SD-27-0.5	West Ditch 1	12.85
SD-28-0.5	West Ditch 1	9.88
	Rose Creek Investigative Samples	· · · · · · · · · · · · · · · · · · ·
Sample ID:	Location	Mean PEC-Q metals*
SD-08-0.5	Rose Creek (at-site)	32.20
SD-09-0.5	Rose Creek	13.71
SD-41	Rose Creek	23.61
SD-41-D	Rose Creek	18.91
SD-42	Rose Creek	22.37
SD-10-0.5	Rose Creek	14.36
SD-11-0.5	Rose Creek	3.83
SD-12-0.5	Rose Creek	2.38
SD-12/FD	Rose Creek	3.42
SD-13-0.5	Rose Creek	9.95
SD-43	Rose Creek	8.09
SD-44	Rose Creek	6.28
	Rose Creek Upstream Samples	
Sample ID:	Location	Mean PEC-Q metals*
SD-03-0.5	Ditch along Kingshwy	4.12
SD-04-0.5	Rose Creek (upstream)	1.32
RSD-1	Rose Creek - Upstream of Facility, east of Kingshighway & south of General Chemical	1.61
RSD-2	Rose Creek - Upstream of Facility, east of Kingshighway & south of General Chemical	2.27
RSD-3	Rose Creek - Upstream of Facility, west of Kingshighway & south of Former Swift Ag Chem	1.27
RSD-4	Rose Creek - Upstream of Facility, west of Kingshighway & south of Former Swift Ag Chem	2.35
	Rose Creek Outfall Investigative Samples	
Sample ID:	Location	Mean PEC-Q metals*
SD-14-0.5	Rose Creek Outfall	1.72
SD-15-0.5	Rose Creek Outfall	1.07
SD-16-0.5	Rose Creek Outfall	0.24
SD-17-0.5	Rose Creek Outfall	1.74
SD-18-0.5	Rose Creek Outfall	1.81
TRC-2-S-0-6	Old Cahokia Watershed [6]	52.20
TRC-2-S-8-10	Old Cahokia Watershed [6]	82.46
TRC-2-S-12-14	Old Cahokia Watershed [6]	19.93
TRC-2-S1-0-6	Old Cahokia Watershed [6]	15.21

Table 6-1
Summary of PEC-Quotients for Metals in Sediment Samples
Old American Zinc Plant Site, Fairmont City, Illinois

	West Ditch Outfall Investigative Samples	
Sample ID:	West Ditch Outfall Investigative Samples Location	Mean PEC-Q metals*
SD-29-0.5	West Ditch 1 Outfall	4.14
SD-30-0.5	West Ditch 1 Outfall	5.43
SD-31-0.5	West Ditch 1 Outfall	4.87
SD-32-0.5	West Ditch 1 Outfall	7.07
SD-33-0.5	West Ditch 1 Outfall	0.64
		28.02
SD-034	Cahokia Watershed [3]	
SD-034-D	Cahokia Watershed [3]	34.88
SD-38	Cahokia Watershed [4]	11.50
SD-39	Cahokia Watershed [4]	2.82
SD-40	Cahokia Watershed [4]	7.20
SD-45	Cahokia Wetland [2]	10.05
SD-46	Cahokia Wetland [2]	18.88
SD-47	Cahokia Wetland [2]	16.50
SD-48	Cahokia Wetland [2]	19.29
TWD-02-C-0-6	Old Cahokia Watershed [5]	7.48
TWD-02-C-6-9	Old Cahokia Watershed [5]	1.61
TWD-02-C-6-9 D	Old Cahokia Watershed [5]	1.38
TWD-02-S-0-6	Old Cahokia Watershed [5]	11.75
TWD-02-S-6-8	Old Cahokia Watershed [5]	2.93
	West Ditch Outfall Reference Samples	3.00
Sample ID:	Location	Mean PEC-Q metals*
TWD-1-N-0-6	Old Cahokia Watershed [5]	2.89
TWD-1-N-6-8	Old Cahokia Watershed [5]	0.42
TWD-1-C-0-6	Old Cahokia Watershed [5]	2.81
TWD-1-C-6-10	Old Cahokia Watershed [5]	1.35
TWD-1-S-0-6	Old Cahokia Watershed [5]	5.39
TWD-1-S-6-9.5	Old Cahokia Watershed [5]	1.40
TWD-02-N-0-6	Old Cahokia Watershed [5]	2.07
TWD-02-N-6-7	Old Cahokia Watershed [5]	2.43
TWD-02-N-0-6	Old Cahokia Watershed [5]	1.93
TWD-03-N-6-8	Old Cahokia Watershed [5]	1.22
TWD-03-C-0-6	Old Cahokia Watershed [5]	2.21
TWD-03-C-6-8.5	Old Cahokia Watershed [5]	1.49
TWD-03-S-0-6	Old Cahokia Watershed [5]	2.00
TWD-03-S-6-8	Old Cahokia Watershed [5]	1.34
TWD-03-S-10-12	Old Cahokia Watershed [5]	1.28
Comple ID:	Rose Creek Outfall Reference Samples	Mana DEC O matalat
Sample ID:	Location Old Cabalia Carata	Mean PEC-Q metals*
SD-50-0-6	Old Cahokia Creek	1.17
SD-50-8-10	Old Cahokia Creek	1.37
SD-51-DITCH-0-6	Old Cahokia Watershed - upgradient of Rose Creek discharge area, adj to Milam Landfill	4.97
SD-51-DITCH-8-10		13.86
	Old Cahokia Watershed - upgradient of Rose Creek discharge area, adj to Milam Landfill	6.29
TRC-3-S-0-6	Old Cahokia Watershed [6]	2.08
TRC-3-S-7-9	Old Cahokia Watershed [6]	3.01
Cample ID:	Impoundment Samples	Mana DEC C 1.1.5
Sample ID:	Location Old Oak okio Watershad IC3	Mean PEC-Q metals*
TRC-1-N-0-6	Old Cahokia Watershed [6]	0.83
TRC-1-N-6-8	Old Cahokia Watershed [6]	0.41
TRC-1-S-0-6	Old Cahokia Watershed [6]	0.81
TRC-1-S-0-6-D	Old Cahokia Watershed [6]	0.78
TRC-1-S-6-8	Old Cahokia Watershed [6]	0.61
TRC-2-N-0-6	Old Cahokia Watershed [6]	0.06
TRC-2-N1-0-6	Old Cahokia Watershed [6]	0.11
TRC-2-N1-6-8	Old Cahokia Watershed [6]	0.17
TRC-2-C-0-6	Old Cahokia Watershed [6]	0.39
TRC-2-C-10-12	Old Cahokia Watershed [6]	0.13
TRC-3-N-0-6	Old Cahokia Watershed [6]	0.06
TRC-3-N-0-6/FD	Old Cahokia Watershed [6]	0.06
TRC-3-N-8-10	Old Cahokia Watershed [6]	
	Old Odilovid Hatelolied fol	0.03

Table 6-1
Summary of PEC-Quotients for Metals in Sediment Samples
Old American Zinc Plant Site, Fairmont City, Illinois

=	Schoenberger Creek Samples	
Sample ID:	Location	Mean PEC-Q metals*
SD-20-0.5	Sch. Creek	1.01
SD-20-0.5/FD	Sch. Creek	0.91
SD-21-0.5	Sch. Creek	0.98
SD-36	Sch. Creek	0.63
SD-037	Sch. Creek	1.27
SD-22-0.5	Sch. Creek	1.31
SD-52	Schoenberger Creek - west of Old Cahokia western boundary	2.12

^{*} Denotes background samples

Sch. Creek = Schoenberger Creek

- [2] Sample collected in wet meadow (wetland) between West Ditch Outfall and open water habitat in the Cahokia Creek Watershed.
- [3] Samples collected at southern edge of open water habitat in the Cahokia Creek watershed.
- [4] Reference samples were collected in the open water habitat of the Old Cahokia Creek Watershed (northeast of SW-34).
- [5] Open water area in western portion of the Old Cahokia Creek Watershed beyond West Ditch discharge area
- [6] Wetland and wet meadow area in western half of Old Cahokia Creek Watershed beyond Rose Creek discharge area.

D = Duplicate

^{*} Based on EPA (2002), only includes arsenic, cadmium, chromium,copper, lead, and zinc. FD = Field duplicate

Table 6-2a Concentrations of Dissolved Metals (mg/L) in Surface Water Samples Compared to IEPA Water Quality Criteria Old American Zinc Plant Site, Fairmont City, Illinois

Sample ID:	SW-01	SW-05	SW-06	SW-24	SW-07	SW-07-FD		D	itch
Date Collected:	5/31/2006	5/31/2006	5/31/2006	6/1/2006	6/2/2006	6/2/2006		AS	CS
ocation Dissolved Arsenic	East Ditch 1 0.0074 B	East Ditch 1 <0.010 U	East Ditch 1 <0.010 U	West Ditch 1 0.0023 B	West Ditch 2 <0.010 U	West Ditch 2 <0.010 U		(mg/L) 0.36	(mg/l
Dissolved Barium	0.078	0.0061 B	0.0060 B	0.044	0.086	0.086		-	-
Dissolved Cadmium	<0.0020 U	<0.002 U			0.18	0.17		0.0085	0.00
Dissolved Chromium	<0.010 U	<0.010 U	<0.010 U		<0.010 U	<0.010 U	,	0.515 0.016	0.11
Dissolved Copper	na 0.0028 B	na <0.0050 U	na 0.0035 B	0.0039 E		0.038		0.070	0.01
Dissolved Lead Dissolved Selenium	<0.010 U	<0.010 U	<0.010 U		<0.010 U	<0.010 U)	-	0.00
Dissolved Silver	<0.0050 U	<0.0050 U	<0.0050 U		<0.0050 U	<0.0050 U		-	-
Dissolved Zinc	0.021	0.037	0.0089 B		36	35		0.112	0.02
Dissolved Mercury	<0.00020 U	<0.00020 U	<0.00020 U	<0.00020 L	<0.00020 U	<0.00020 U		0.0022	0.00
HIGH PLEISTED DAY		OW 40/FD	DW 40	OW 47	OW 00	SW-10		Passa	Creek
Sample ID: Date Collected:	SW-12 6/12/2006	SW-12/FD 6/12/2006	SW-13 6/12/2006	SW-17 6/12/2006	SW-08 5/31/2006	6/12/2006		AS	CS
Location	Rose Creek	Rose Creek	Rose Creek	Rose Creek Outfall	Rose Creek	Rose Creek		(mg/L)	(mg
Dissolved Arsenic	0.0028 B	0.0029 B	<0.010 U	0.0053 E		0.0078 B		0.36	0.1
Dissolved Barium	0.060	0.060	0.060	0.060	0.012	0.034		-	-
Dissolved Cadmium	0.00056 B	0.00060 B	0.00087 B		<0.0020 U	0.014		0.0102	0.00
Dissolved Chromium	<0.010 U	<0.010 U	<0.010 U		<0.010 U	<0.010 U		0.59 0.019	0.1
Dissolved Copper Dissolved Lead	na <0.0050 U	na <0.0050 U	na <0.0050 U	na <0.0050 U	na <0.0050 U	na <0.0050 U		0.019	0.01
Dissolved Selenium	<0.010 U	<0.010 U	<0.010 U		<0.010 U	<0.010 U		-	0.0
Dissolved Silver	<0.0050 U							-	
Dissolved Zinc	0.098	0.090	0.27	0.27	0.015 B			0.130	0.0
Dissolved Mercury	<0.00020 U	<0.00020 U	<0.00020 U	<0.00020 U	<0.00020 U	<0.00020 U		0.0022	0.00
	SW-11	OW 44 (TOTAL)	DW 44 D	SW-41-D (TOTAL)	OW 44 D D	SW-42 (TOTAL)*		Pour	Const
Sample ID: Date Collected:	6/12/2006	SW-41 (TOTAL) 12/12/2006	SW-41 Resample 7/19/2007	12/12/2006	SW-41 D Resample 7/19/2007	12/12/2006	13	AS	Creek
Location	Rose Creek	Rose Creek	Rose Creek	Rose Creek	Rose Creek	Rose Creek		(mg/L)	(mg
Dissolved Arsenic	0.0045 B		<0.010	<0.010	<0.010	<0.010		0.36	0.
Dissolved Barium	0.044	0.045	0.044	0.045	0.054	0.053		0.0400	0.00
Dissolved Cadmium	0.0040 <0.010 U	0.21 <0.010	0.03 <0.010	0.19 <0.010	0.0310 0.0017 J	0.19 0.0024 J		0.0102 0.59	0.00
Dissolved Chromium Dissolved Copper	<0.010 U na	0.010	0.0075 J	0.010	0.0017 J	0.0024 3		0.019	0.0
Dissolved Copper Dissolved Lead	<0.0050 U	<0.0050	<0.0075	0.0046	<0.0050	<0.0050		0.0840	0.01
Dissolved Selenium	<0.010 U	0.0048 J	<0.010	<0.010	<0.010	<0.010	-	-	0.0
Dissolved Silver	<0.0050 U	<0.0050	<0.0050	<0.0050	0.0012 J,B	0.0013 J			_
Dissolved Zinc	0.46	31	4.2 B	28	4.2 B	23		0.130	0.0
Dissolved Mercury	<0.00020 U	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	171-1	0.0022	0.00
Sample ID: Date Collected:	SW-43 (TOTAL) 12/12/2006	SW-43 Resample 7/18/2007	SW-44 (TOTAL) 12/12/2006	SW-44 Resample 7/18/2007					Creek
Location	Rose Creek	Rose Creek	Rose Creek	Rose Creek				AS (mg/L)	(mg
Dissolved Arsenic	<0.010	0.0036 J	Rose Creek <0.010	Rose Creek 0.019					
Dissolved Arsenic Dissolved Barium	<0.010 0.043	0.0036 J 0.031	Rose Creek <0.010 0.054	Rose Creek 0.019 0.04				(mg/L) 0.36	0.1
Dissolved Arsenic Dissolved Barium Dissolved Cadmium	<0.010 0.043 0.0055	0.0036 J 0.031 <0.0020	Rose Creek <0.010 0.054 0.0080	Rose Creek 0.019 0.04 0.001 J				(mg/L) 0.36 - 0.0102	0.00
Dissolved Barium Dissolved Cadmium Dissolved Chromium	<0.010 0.043 0.0055 0.0024 J	0.0036 J 0.031 <0.0020 <0.010	Rose Creek <0.010 0.054 0.0080 0.0023 J	Rose Creek 0.019 0.04 0.001 J 0.0023 J				(mg/L) 0.36 0.0102 0.59	0.00
Dissolved Arsenic Dissolved Barium Dissolved Cadmium Dissolved Chromium Dissolved Copper	<0.010 0.043 0.0055 0.0024 J 0.0086 J	0.0036 J 0.031 <0.0020 <0.010 0.0035 J	Control Cont	Rose Creek 0.019 0.04 0.001 J 0.0023 J 0.0032 J				(mg/L) 0.36 0.0102 0.59 0.019	0.1 0.00 0.1 0.0
Dissolved Arsenic Dissolved Barium Dissolved Cadmium Dissolved Chromium Dissolved Copper Dissolved Lead	<0.010 0.043 0.0055 0.0024 J 0.0086 J <0.0050	0.0036 J 0.031 <0.0020 <0.010	Control Cont	Rose Creek 0.019 0.04 0.001 J 0.0023 J 0.0032 J <0.0050				(mg/L) 0.36 0.0102 0.59	0.1 0.00 0.1 0.0 0.01
Dissolved Arsenic Dissolved Barium Dissolved Cadmium Dissolved Chromium Dissolved Copper	<0.010 0.043 0.0055 0.0024 J 0.0086 J	0.0036 J 0.031 <0.0020 <0.010 0.0035 J <0.0050	Control Cont	Rose Creek 0.019 0.04 0.001 J 0.0023 J 0.0032 J				0.36 	0.00 0.1 0.0 0.0
Dissolved Arsenic Dissolved Barium Dissolved Cadmium Dissolved Chromium Dissolved Copper Dissolved Lead Dissolved Selenium	<0.010 0.043 0.0055 0.0024 J 0.0086 J <0.0050 <0.010	0.0036 J 0.031 <0.0020 <0.010 0.0035 J <0.0050 <0.010	Rose Creek <0.010 0.054 0.0080 0.0023 J 0.0076 J <0.0050 <0.010	Rose Creek 0.019 0.04 0.001 0.0023 0.0023 0.0032 <0.0050 <0.010				0.36 	0.00 0.1 0.00 0.0 0.0
Dissolved Arsenic Dissolved Barium Dissolved Cadmium Dissolved Chromium Dissolved Copper Dissolved Lead Dissolved Selenium Dissolved Silver	<0.010 0.043 0.0055 0.0024 J 0.0086 J <0.0050 <0.010	0.0036 J 0.031 <0.0020 <0.010 0.0035 J <0.0050 <0.010 0.0025 J,B	Rose Creek <0.010 0.054 0.0080 0.0023 J 0.0076 J <0.0050 <0.010 0.0017 J 0.0017 J	Rose Creek 0.019 0.04 0.001 J 0.0023 J 0.0032 S <0.0050 <0.010 0.002 J,B				(mg/L) 0.36 0.0102 0.59 0.019 0.0840	0.00 0.1 0.00 0.1 0.00 0.01 0.00 0.00
Dissolved Arsenic Dissolved Barium Dissolved Cadmium Dissolved Chromium Dissolved Copper Dissolved Copper Dissolved Selenium Dissolved Selenium Dissolved Siver Dissolved Mercury	<0.010 0.043 0.0055 0.0024 0.0086 <0.0050 <0.010 <0.0050 0.84 <0.0020	0.0036 J 0.031 <0.0020 <0.010 0.0035 J <0.0050 <0.010 0.0025 J,B 0.035 B <0.00020	Rose Creek	Rose Creek 0.019 0.04 0.001 0.0023 0.0023 0.0032 <0.0050 <0.010 0.002 J,B <0.00020		AU 47	SW 60	(mg/L) 0.36 0.0102 0.59 0.019 0.0840 0.130 0.0022	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dissolved Arsenic Dissolved Barium Dissolved Cadmium Dissolved Chromium Dissolved Copper Dissolved Lead Dissolved Selenium Dissolved Silver Dissolved Zinc	<0.010 0.043 0.0055 0.0024 J 0.0086 J <0.0050 <0.010 <0.0050	0.0036 J 0.031 <0.0020 <0.010 0.0035 J <0.0050 <0.010 0.0025 J,B 0.035 B	Rose Creek <0.010 0.054 0.0080 0.0023 J 0.0076 J <0.0050 <0.010 0.0017 J 1.4	Rose Creek 0.019 0.04 0.001 J 0.0023 J 0.0032 J <0.0050 <0.010 0.002 J,B		SW-37 6/29/2006	SW-52 12/12/2006	(mg/L) 0.36 - 0.0102 0.59 0.019 0.0840 - 0.130	0.1
Dissolved Arsenic Dissolved Barium Dissolved Cadmium Dissolved Chromium Dissolved Copper Dissolved Lead Dissolved Selenium Dissolved Selenium Dissolved Silver Dissolved Mercury Dissolved Mercury	<0.010 0.043 0.0055 0.0024 1 0.0086 0.0050 <0.010 <0.0050 0.84 <0.00020	0.0036 J 0.031 <0.0020 <0.010 0.0035 J <0.0050 <0.0050 <0.0050 J 0.0025 J,B 0.035 B <0.00020	Rose Creek	Rose Creek 0.019 0.04 0.001 0.0023 0.0032 <0.0050 <0.010 0.002 J,B <0.0050 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$	SW-36		12/12/2006 Schoenberger Creek - west of	(mg/L) 0.36	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dissolved Arsenic Dissolved Barium Dissolved Cadmium Dissolved Chromium Dissolved Copper Dissolved Lead Dissolved Selenium Dissolved Selenium Dissolved Silver Dissolved Selenium Dissolved Mercury Dissolved Mercury Sample ID: Date Collected:	<.0.010 .0.043 0.0025 0.0024 0.0086 <.0.0050 <.0.010 <.0.0050 0.84 <0.00020 SW-20 6/13/2006	0.0036 J 0.031 <0.0020 <0.010 0.0035 J <0.0050 <0.010 0.0025 J,B 0.035 B <0.00020	Rose Creek	Rose Creek 0.019 0.04 0.001 0.0023 0.0032 <0.0050 <0.010 0.002 J,B <0.0050 \$\$\$\$ <0.00000 SW-22 6/13/2006	SW-36 6/29/2006 Sch. Creek	6/29/2006 Sch. Creek	12/12/2006 Schoenberger Creek - west of Old Cahokia Watershed	(mg/L) 0.36 0.0102 0.59 0.019 0.0840 0.130 0.0022 Schoenbe AS	0.1
Dissolved Arsenic Dissolved Barium Dissolved Cadmium Dissolved Chromium Dissolved Copper Dissolved Copper Dissolved Selnium Dissolved Selnium Dissolved Selnium Dissolved Selnium Dissolved Mercury Dissolved Mercury Dissolved Mercury Dissolved Mercury Dissolved Mercury Dissolved Mercury Dissolved Mercury Dissolved Mercury	-0.010 0.043 0.0055 0.0024 J 0.0086 -0.0050 -0.010 -0.0050 0.84 -0.0020 SW-20 6/13/2006	0.0036 J 0.031 -0.0020 -0.010 0.0035 J -0.0050 -0.010 0.0025 J,B 0.035 B -0.00020 SW-20/FD 6/13/2006 Sch. Craek 0.0056 B	Rose Creek	Rose Creek	SW-36 6/29/2006 Sch. Creek <0.010 U	6/29/2006 Sch. Creek <0.010 U	12/12/2006 Schoenberger Creek - west of Old Cahokia Watershed	(mg/L) 0.36	0.1
Dissolved Arsenic Dissolved Barium Dissolved Cadmium Dissolved Chromium Dissolved Copper Dissolved Copper Dissolved Selenium Dissolved Silver Dissolved Silver Dissolved Mercury Sample ID: Date Collected: Dissolved Arsenic Dissolved Barium	-0,010 -0,043 0,0024 0,0086 -0,0050 -0,010 -0,0050 -0,0020 SW-20 6/13/2006 Sch. Creek 0,042 B 0,082	0.0036 J 0.031 -0.0020 -0.010 0.0035 J -0.0050 -0.010 0.0025 J,B 0.035 B -0.00020 SW-20/FD 6/13/2006 Sch. Creek 0.0056 B 0.081	Rose Creek	Rose Creek 0.019 0.04 0.001 0.0023 0.0032 0.0032 <0.0050 <0.010 0.0020 SW-22 6/13/2006 Sch. Creek <0.082	SW-36 6/29/2006 Sch. Creek <0.010 U	6/29/2006 Sch. Creek <0.010 U 0.11	12/12/2006 Schoenberger Creek - west of Old Cahokia Watershed 0.010	(mg/L) 0.36 0.0102 0.59 0.019 0.0840 0.130 0.0022 Schoenbe AS (mg/L) 0.36	0.1
Dissolved Arsenic Dissolved Barium Dissolved Cadmium Dissolved Chromium Dissolved Chromium Dissolved Copper Dissolved Selnium Dissolved Selnium Dissolved Selnium Dissolved Silver Dissolved Mercury Sample ID: Date Collected:	-0.010 0.043 0.0055 0.0024 J 0.0086 -0.0050 -0.010 -0.0050 0.84 -0.0020 SW-20 6/13/2006	0.0036 J 0.031 -0.0020 -0.010 0.0035 -0.0050 -0.010 0.0025 J,B 0.035 B -0.00020 SW-20/FD 6/13/2006 Sch. Creek 0.0056 B 0.081	Rose Creek	Rose Creek	SW-36 6/29/2006 Sch. Creek <0.010 U 0.14 <0.0020 U	Sch. Creek <0.010 U 0.11 <0.0020 U	12/12/2006 Schoenberger Creek - west of Old Cahokia Watershed 0.032 <0.0020	(mg/L) 0.36 0.010 0.59 0.019 0.0840 0.130 0.0022 Schoenbe AS (mg/L) 0.36 0.019	0.1
Dissolved Arsenic Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Copper Dissolved Copper Dissolved Selnium Dissolved Selnium Dissolved Silver Dissolved Mercury Dissolved Mercury Dissolved Arsenic Dissolved Arsenic Dissolved Cadmium Dissolved Cadmium Dissolved Commium	-0.010 0.043 0.043 0.0055 0.0024 J 0.0086 <-0.0050 -0.010 <-0.0050 0.84 -0.0020 Sch. Creek 0.0042 B 0.082 -0.0020 U -0.010 U	0.0036 J 0.031 -0.0020 -0.010 0.0035 J -0.0050 -0.010 0.0025 J,B 0.035 B -0.0020 Sw-20/FD 6/13/2006 Sch. Creek 0.0056 B 0.081 -0.0020 U -0.010 U na	Rose Creek	Rose Creek	SW-36 6/29/2006 Sch. Creek <0.010 U 0.14 <0.0020 U 0.0017 B na	Sch. Creek <0.010 0.11 <0.0020 0.0013 B na	12/12/2006 Schoenberger Creek - west of Old Cahokia Watershed <.0.010032 <.0.0020 <.0.010 <.0.010 <.0.010	(mg/L) 0.36 0.0102 0.59 0.019 0.0840 0.130 0.0022 Schoenbe AS (mg/L) 0.36	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dissolved Arsenic Dissolved Barium Dissolved Cadmium Dissolved Chromium Dissolved Copper Dissolved Selenium Dissolved Selenium Dissolved Selenium Dissolved Silver Dissolved Zinc Dissolved Mercury Sample ID: Date Collected: Ostalian Dissolved Arsenic Dissolved Barium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Camium Dissolved Capper Dissolved Copper Dissolved Copper	 -0,010 0,043 0,0055 0,00724 0,0086 -0,0010 -0,010 -0,0020 -0,0020 Sch. Creek 0,0042 0,0020 -0,0020 -0,0020 -0,0010 -0,0020 -0,0010 -0,0020 -0,0010 -0,0050 	0.0036 J 0.031 -0.0020 -0.010 0.0035 J -0.0050 -0.010 0.0025 J,B 0.035 B -0.00020 Sur-20/FD 6/13/2006 Sch. Creek 0.0056 B 0.081 -0.0020 U -0.010 U na -0.0050	Rose Creek	Rose Creek	Sch. Creek Sch. Creek	Sch. Creek <0.010 U 0.11 <0.0020 U 0.0013 B na <0.0050 U <0.0050 U	12/12/2006 Schoenberger Creek - west of Old Cahokia Watershed	(mgfL) 0.36 0.0102 0.59 0.019 0.0840 0.130 0.0022 Schoenbe AS (mgfL) 0.36 0.019	0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Dissolved Arsenic Dissolved Garium Dissolved Cadmium Dissolved Cadmium Dissolved Copper Dissolved Selenium Dissolved Selenium Dissolved Selenium Dissolved Silver Dissolved Mercury Sample ID: Date Collected: Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Capper Dissolved Capper Dissolved Copper Dissolved Copper Dissolved Copper	-0.010 0.043 0.0055 0.0024 J 0.0086 <0.0050 -0.010 <0.0050 0.84 <0.00020 Sw-20 6/13/2006 Sch. Creek 0.0042 B 0.0042 B 0.0042 B 0.0050 0.082 <0.0050 U <0.010 U 0.010 U	0.0036 J 0.031 <0.0020 <0.010 0.0035 J <0.0050 <0.010 0.0025 J,B 0.035 B <0.00020 Sch. Creek 0.056 B 0.056 B 0.056 B 0.050 U <0.010 U	Rose Creek	Rose Creek	SW-36 6/29/2006 Sch. Creek <0.010 U 0.14 <0.0020 U 0.0017 B as <0.0050 U 0.0078 D	Sch. Creek <0.010 U 0.11 <0.0020 U 0.0013 B na <0.0050 U <0.010 U 0.0050 U	12/12/2006 Schoenberger Creek - west of Old Cahokia Watershed - 0.010 - 0.032 - 0.0020 - 0.010 - 0.010 - 0.010 - 0.010 - 0.010 - 0.010 - 0.010	(mg/L) 0.36 0.0102 0.59 0.019 0.0810 0.130 0.0022 Schoenbe AS (mg/L) 0.36 0.019 0.948 0.032 0.155	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dissolved Arsenic Dissolved Barium Dissolved Cadmium Dissolved Chromium Dissolved Copper Dissolved Selenium Dissolved Selenium Dissolved Selenium Dissolved Mercury Dissolved Mercury Sample ID: Date Collected: Dissolved Arsenic Dissolved Arsenic Dissolved Barium Dissolved Cadmium Dissolved Cadmium Dissolved Capper Dissolved Lead Dissolved Selenium Dissolved Selenium Dissolved Selenium Dissolved Selenium Dissolved Selenium Dissolved Selenium Dissolved Selenium	-0.010 0.043 0.0055 0.0024 J 0.0086 <-0.0050 -0.010 <-0.0050 0.64 -0.0020 Sw-20 6/13/2006 Sch. Creek 0.0042 -0.0020 U -0.010 -0.0050 U -0.010 U	0.0036 J 0.031 -0.0020 -0.010 0.0035 J -0.0050 -0.010 0.0025 J,B 0.035 B -0.00020 Sw-20/FD 6/13/2006 Sch. Creek 0.0050 0.081 -0.0020 -0.0010 0.0010 0.0050 U -0.010 U -0.0050 U -0.0050 U -0.0050	Rose Creek	Rose Creek	Sch. Creek Co.010 U	6/29/2006 Sch. Creek <0.010 U 0.11 <0.0020 0.0013 B na <0.0050 U <0.010 U 0.00110 U 0.0010 U	12/12/2006 Scheenberger Creek - west of Old Cahokia Watershed - 0.010 - 0.032 - 0.010 - 0.010 - 0.010 - 0.050 - 0.0050 - 0.0050	(mg/L) 0.36 0.019 0.059 0.019 0.0840 0.130 0.0022 Schoenbe AS (mg/L) 0.36 0.019 0.948 0.032 0.155	0.1 0.00 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dissolved Arsenic Dissolved Garium Dissolved Cadmium Dissolved Cadmium Dissolved Copper Dissolved Selenium Dissolved Selenium Dissolved Selenium Dissolved Silver Dissolved Mercury Dissolved Mercury Dissolved Mercury Dissolved Mercury Dissolved Mercury Dissolved Mercury Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Copper Dissolved Copper Dissolved Selenium Dissolved Selenium	-0.010 0.043 0.0055 0.0024 J 0.0086 <0.0050 -0.010 <0.0050 0.84 <0.00020 Sw-20 6/13/2006 Sch. Creek 0.0042 B 0.0042 B 0.0042 B 0.0050 0.082 <0.0050 U <0.010 U 0.010 U	0.0036 J 0.031 <0.0020 <0.010 0.0035 J <0.0050 <0.010 0.0025 J,B 0.035 B <0.00020 Sch. Creek 0.056 B 0.056 B 0.056 B 0.050 U <0.010 U	Rose Creek	Rose Creek	SW-36 6/29/2006 Sch. Creek <0.010 U 0.14 <0.0020 U 0.0017 B na <0.0050 U 0.0078 B <0.0050 U 0.012 O 0.012 B	Sch. Creek <0.010 U 0.11 <0.0020 U 0.0013 B na <0.0050 U <0.010 U 0.0050 U	12/12/2006 Schoenberger Creek - west of Old Cahokia Watershed 0.032 0.0020 0.010 0.010 0.010 0.0050 0.010 0.0050 0.01 J,B	(mg/L) 0.36 0.0102 0.59 0.019 0.0810 0.130 0.0022 Schoenbe AS (mg/L) 0.36 0.019 0.948 0.032 0.155	0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Dissolved Arsenic Dissolved Barium Dissolved Cadmium Dissolved Chromium Dissolved Coper Dissolved Selenium Dissolved Selenium Dissolved Selenium Dissolved Mercury Dissolved Mercury Dissolved Mercury Dissolved Mercury Dissolved Cambium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Selenium Dissolved Mercury	 <0,010 0,043 0,0055 0,0076 0,0086 <0,0050 <0,010 <0,0050 <0,004 <0,0020 <0,0020 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,0070 <0,0070 <0,0078 <0,0070 <0,0078 <0,00020 <0,0078 <0,00020 <0,0078 <0,00020 <0,00020 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00020 	0.0036 J 0.031 -0.0020 -0.010 0.0035 J -0.0050 -0.010 0.0025 J,B 0.035 B -0.00020 Sch. Creek 0.0056 B 0.081 -0.0020 U -0.010 U -0.010 U -0.0050 -0.0050 U -0.0050 U -0.0050 U -0.0050 U -0.0050 U -0.0050 U -0.0050 U -0.0050 U	Rose Creek	Rose Creek	SW-36 6/29/2006 Sch. Creek <0.010 U 0.14 <0.0020 U 0.0017 B <0.0050 U 0.0078 B <0.0050 U 0.012 B <0.012 B	6/29/2006 Sch. Creek <0.010 U 0.11 <0.0020 U 0.0013 B na <0.0050 U <0.010 U <0.0050 U 0.0067 B <0.0050 U	12/12/2006 Scheenberger Creek - west of Old Cahokia Watershed - 0.012 - 0.010 - 0.010 - 0.010 - 0.010 - 0.010 - 0.0050 - 0.01 J,B - 0.0020	(mg/L) 0.36 0.0102 0.59 0.019 0.0840 0.0022 Schoenbe AS (mg/L) 0.36 0.130 0.0022	0.000000000000000000000000000000000000
Dissolved Arsenic Dissolved Garium Dissolved Cadmium Dissolved Cadmium Dissolved Copper Dissolved Copper Dissolved Selnium Dissolved Selnium Dissolved Silver Dissolved Silver Dissolved Mercury Sample ID: Date Collected: Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Copper Dissolved Silver Dissolved Silver Dissolved Silver Dissolved Silver Dissolved Silver Dissolved Mercury Dissolved Mercury Sample ID:	SW-20 6/13/2006 Sch. Creek 0.0042 B 0.0050 0.0050 0.050 0.042 B 0.0020 SW-20 6/13/2006 Sch. Creek 0.0042 B 0.082 0.0020 U 0.0070 U 0.0078 B 0.0050 U	0.0036 J 0.031 -0.0020 -0.010 0.0035 J -0.0050 -0.010 0.0025 J,B 0.035 B -0.00020 SW-20/FD 6/13/2006 Sch. Creek 0.0056 B 0.0056 B 0.0010 -0.0020 U -0.0010 U -0.0050 U -0.0050 U -0.0020 U -0.0050 U -0.0020 U -0.0050 U -0.0020 U	Rose Creek	Rose Creek	SW-36 6/29/2006 Sch. Creek <0.010 U 0.14 <0.0020 U 0.0017 B <0.0050 U 0.0078 B <0.0050 U 0.012 C 0.012 C SW-38 Resample	6/29/2006 Sch. Creek <0.010 U 0.11 <0.0020 U 0.0013 B <0.0050 U <0.0050 U <0.0050 U <0.0067 B <0.00020 U SW-39 (TOTAL)	12/12/2006 Schoenberger Creek - west of Old Cahokia Watershed - 0.010 - 0.032 - 0.020 - 0.010 - 0.0050 - 0.010 - 0.0050 - 0.01 J,B - 0.0020	(mg/L) 0.36 0.0102 0.59 0.019 0.080 0.130 0.0022 Schoenbx AS (mg/L) 0.38 0.019 0.949 0.949 0.949 0.032 0.155 0.21 0.002	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Dissolved Arsenic Dissolved Garium Dissolved Cadmium Dissolved Code Dissolved Copper Dissolved Copper Dissolved Selenium Dissolved Selenium Dissolved Silver Dissolved Silver Dissolved Mercury Sample ID: Jate Collected: Dissolved Arsenic Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Copper Dissolved Silver Dissolved Silver Dissolved Silver Dissolved Silver Dissolved Silver Dissolved Mercury Jample ID:	 <0,010 0,043 0,0055 0,0076 0,0086 <0,0050 <0,010 <0,0050 <0,004 <0,0020 <0,0020 <0,002 <0,002 <0,002 <0,002 <0,002 <0,002 <0,0070 <0,0070 <0,0078 <0,0070 <0,0078 <0,00020 <0,0078 <0,00020 <0,0078 <0,00020 <0,00020 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00020 	0.0036 J 0.031 -0.0020 -0.010 0.0035 J -0.0050 -0.010 0.0025 J,B 0.035 B -0.00020 Sch. Creek 0.0056 B 0.081 -0.0020 U -0.010 U -0.010 U -0.0050 -0.0050 U -0.0050 U -0.0050 U -0.0050 U -0.0050 U -0.0050 U -0.0050 U -0.0050 U	Rose Creek	Rose Creek	SW-36 6/29/2006 Sch. Creek <0.010 U 0.14 <0.0020 U 0.0017 B <0.0050 U 0.0078 B <0.0050 U 0.012 B <0.012 B	6/29/2006 Sch. Creek <0.010 U 0.11 <0.0020 U 0.0013 B na <0.0050 U <0.010 U <0.0050 U 0.0067 B <0.0050 U	12/12/2006 Schoenberger Creek - west of Old Cahokia Watershed - 0.010 - 0.020 - 0.010 - 0.010 - 0.0050 - 0.011 - 0.0050 - 0.01 J,B - 0.00020	(mg/L) 0.36 0.0102 0.59 0.019 0.0840 0.0022 Schoenbe AS (mg/L) 0.36 0.130 0.0022	0.000000000000000000000000000000000000
Dissolved Arsenic Dissolved Garium Dissolved Cadmium Dissolved Cadmium Dissolved Copper Dissolved Copper Dissolved Selnium Dissolved Selnium Dissolved Silver Dissolved Silver Dissolved Mercury Dissolved Mercury Dissolved Mercury Dissolved Arsenic Dissolved Arsenic Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Selnium Dissolved	SW-20 6/13/2006 Sch. Creek 0.0042 B 0.085 40.0020 SW-20 6/13/2006 Sch. Creek 0.0042 B 0.082 <0.0020 U 0.010 U 0.0050 U 0.0078 B 0.0020 U SW-45 (TOTAL)* 12/12/2006 Cahokia	0.0036 J 0.031 -0.0020 -0.010 0.0035 J -0.0050 -0.010 0.0025 J,B 0.035 B -0.0056 6/13/2006 Sch. Creek 0.0056 B 0.081 -0.0020 U -0.010 U -0.0056 U -0.0050 U	Rose Creek	Rose Creek	SW-36 6/29/2006 Sch. Creek <0.010 U 0.14 <0.0020 U 0.0017 B <0.0050 U 0.0078 B <0.0050 U 0.012 C 0.012 C SW-38 Resample	Sch. Creek <0.010 U 0.11 <0.0020 U 0.0013 B na <0.0050 U <0.0050 U <0.0050 U 0.0067 B <0.00020 U SW-39 (TOTAL) 12/12/2006	12/12/2006 Schoenberger Creek - west of Old Cahokia Watershed - 0.010 - 0.032 - 0.0020 - 0.010 - 0.0050 - 0.011 - 0.0050 - 0.01 J,B - 0.0020 SW-39 Resample 7/18/2007 Reference ¹⁸ - 40 feet east of SW-	(mg/L) 0.36	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dissolved Arsenic Dissolved Barium Dissolved Cadmium Dissolved Chromium Dissolved Coper Dissolved Selnium Dissolved Selnium Dissolved Selnium Dissolved Selnium Dissolved Mercury Dissolved Mercury Dissolved Mercury Dissolved Arsenic Dissolved Arsenic Dissolved Arsenic Dissolved Cadmium Dissolved Coper Dissolved Chromium Dissolved Chromium Dissolved Coper Dissolved Selenium Dissolved Selenium Dissolved Selenium Dissolved Mercury Dissolved Mercury Dissolved Selenium Dissolved Mercury Dissolved Selenium Dissolved Mercury Dissolved Selenium Dissolved Mercury Dissolved Selenium Dissolved Coper Dissolved Selenium Dissolved Selenium Dissolved Selenium Dissolved Coper Dissolved Selenium Dissolved Coper Dissolved Selenium	-0,010 0,043 0,0055 0,0024 J 0,0086 <0,0050 -0,010 <0,0050 0,64 <0,00020 Sw-20 6/13/2006 Sch. Creek 0,0042 B 0,082 <0,0020 U -0,010 U -0,	0.0036 J 0.031 -0.0020 -0.010 0.0035 J -0.0050 -0.010 0.0025 J,B 0.035 B -0.00020 SW-20/FD 6/13/2006 Sch. Creek 0.0050 0.081 -0.0020 U -0.010 U -0.0050 U	Rose Creek	Rose Creek	SW-36 6/29/2006 Sch. Creek <0.010 U 0.04 <0.0017 B <0.0050 U 0.0078 B <0.0050 U 0.012 B <0.0050 U SW-38 Resample 7/18/2007 Reference [6]	Sch. Creek -0.010 U 0.11 -(-0.0020 U 0.0013 B -(-0.0050 U -(-0.010 U 0.0050 U 0.0067 B -(-0.0060 U 0.0067 B -(-0.0020 U 0.0067 B -(-0.0020 U 0.0067 B Reference [5]	12/12/2006 Scheenberger Creek - west of Old Cahokia Watershed - 0.010 - 0.0020 - 0.010 - 0.010 - 0.0050 - 0.011 - 0.0050 - 0.01 J,B - 0.00020 SW-39 Resample 7/18/2007 Reference 19 - 40 feet east of SW-38	(mg/L) 0.36	0.000000000000000000000000000000000000
Dissolved Arsenic Dissolved Garium Dissolved Cadmium Dissolved Cadmium Dissolved Copper Dissolved Copper Dissolved Selnium Dissolved Selnium Dissolved Silver Dissolved Silver Dissolved Mercury Dissolved Mercury Dissolved Mercury Dissolved Arsenic Dissolved Arsenic Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Selnium Dissolved	SW-20 6/13/2006 Sch. Creek 0.0042 B 0.085 40.00020 SW-20 6/13/2006 Sch. Creek 0.0042 B 0.082 40.0050 U 40.010 U 40.0050 U 0.0078 B 40.0050 U 50.0078 B 50.0078 B 50.0078 B 50.0078 B 50.0078 B 50.0078 B 50.0078 B 50.0078 B 50.0078 B 50.0078 B 60.0078 B 60	0.0036 J 0.031 -0.0020 -0.010 0.0035 J -0.0050 -0.010 0.0025 J,B 0.035 B -0.0056 6/13/2006 Sch. Creek 0.0056 B 0.081 -0.0020 U -0.010 U -0.0056 U -0.0050 U	Rose Creek	Rose Creek	SW-36 6/29/2006 Sch. Creek <0.010 U 0.14 <0.0020 U 0.0017 B na <0.0050 U 0.0078 B <0.0050 U 0.012 B <1.0050 U 0.012 Reference [5] 0.0034 J	Sch. Creek	12/12/2006 Schoenberger Creek - west of Old Cahokia Watershed -0.010 -0.032 -0.0020 -0.010 -0.0050 -0.010 -0.0050 -0.01 J,B -0.0020 SW-39 Resample 7/18/2007 Reference ¹⁸ - 40 feet east of SW- 38 -0.0034 J	(mg/L) 0.36	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Dissolved Arsenic Dissolved Garium Dissolved Cadmium Dissolved Cadmium Dissolved Copper Dissolved Copper Dissolved Selnium Dissolved Selnium Dissolved Silver Dissolved Silver Dissolved Mercury Sample ID: Date Collected: Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Selnium Dissolved Silver Dissolved Silver Dissolved Silver Dissolved Silver Dissolved Mercury Sample ID: Sampl	SW-20 6/13/2006 Sch. Creek 0.0042 0.050 0.084 0.0050 0.84 <0.0050 0.84 <0.0020 SCh. Creek 0.0042 B 0.082 <0.0050 U 0.0710 U 0.0078 B 0.0050 U	0.0036 J 0.031 -0.0020 -0.010 0.0035 J -0.0050 -0.010 0.0025 J,B 0.035 B -0.0020 SW-20/FD 6/13/2006 Sch. Creek 0.0056 B 0.001 -0.0050 U	Rose Creek	Rose Creek	Sch. Creek Co.010 U	Sch. Creek	12/12/2006 Schoenberger Creek - west of Old Cahokia Watershed - 0.010 - 0.0020 - 0.010 - 0.0050 - 0.011 - 0.0050 - 0.01 J,B - 0.00020 SW-39 Resample 7/16/2007 Reference ¹⁰ / ₈ - 40 feet east of SW- 38 - 0.0034 - 0.0042	(mg/L) 0.36 -0.0102 0.59 0.019 0.0840 0.130 0.0022 Schoenbe AS (mg/L) 0.36 0.19 0.948 0.032 0.155 0.21 0.002 Cahokia AS (mg/L) 0.36 0.37 0.36 0.37 0.36 0.37 0.37 0.37 0.38 0.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Dissolved Arsenic Dissolved Barium Dissolved Cadmium Dissolved Cadmium Dissolved Copper Dissolved Selevium Dissolved Silver Dissolved Silver Dissolved Silver Dissolved Mercury Dissolved Mercury Dissolved Mercury Dissolved Arsenic Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Silver Dissolved Cadmium Dissolved Silver Dissolved Camper Dissolv	SW-20 6/13/2006 Sch. Creek 0.0042 0.0050 0.84 <0.0020 SW-20 6/13/2006 Sch. Creek 0.0042 0.0050 0.84 <0.0020 U SW-20 6/13/2006 Sch. Creek 0.0042 0.0050 0.0020 U SW-20 6/13/2006 Sch. Creek 0.0020 U SW-20 6/13/2006 Sch. Creek 0.0020 U SW-20 6/13/2006 Chokia Wetland I 0.004 1.0 0.0028 U 0.0028	0.0036 J 0.031 -0.0020 -0.010 0.0035 J -0.0050 -0.010 0.0025 J,B 0.035 B -0.0050 -0.00020 SW-20/FD 6/13/2006 Sch. Craek 0.0050 0.081 -0.0020 0.010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030	Rose Creek	Rose Creek	SW-36 6/29/2006 Sch. Creek <0.010 U 0.14 <0.0020 U 0.0017 B na <0.0050 U 0.0078 B <0.0050 U 0.012 B <1.0050 U 0.012 Reference [5] 0.0034 J	Sch. Creek	12/12/2006 Schoenberger Creek - west of Old Cahokia Watershed -0.010 -0.032 -0.0020 -0.010 -0.0050 -0.010 -0.0050 -0.01 J,B -0.0020 SW-39 Resample 7/18/2007 Reference ¹⁸ - 40 feet east of SW- 38 -0.0034 J	(mg/L) 0.36	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
Dissolved Arsenic Dissolved Chromium Dissolved Chromium Dissolved Chromium Dissolved Chromium Dissolved Selnium Dissolved Selnium Dissolved Selnium Dissolved Selnium Dissolved Mercury Dissolved Mercury Dissolved Mercury Dissolved Arsenic Dissolved Cadmium Dissolved Cadmium Dissolved Selnium Dissolved Coper Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Coper	-0,010 0,043 0,0055 0,0024 J 0,0086 J <0,0050 -0,010 <0,0050 0,84 <0,00020 Sw-20 6/13/2006 Sch. Creek 0,0042 B 0,082 <0,0020 U <0,0020 U <0,0050 U <0,0050 U <0,0078 B <0,00020 U \$w-45 (TOTAL)* 12/12/2006 Cahokia Wettand ^[3] 0,0028 J 0,0028 J 0,0028 J 1,9	0.0036 J 0.031 -0.0020 -0.010 0.0035 J -0.0050 -0.010 0.0025 J,B 0.035 B -0.00020 SW-20/FD 6/13/2006 Sch. Creek 0.0056 0.081 -0.0050 U -0.010 U -0.010 U -0.010 U -0.0050 U	Rose Creek	Rose Creek	SW-36 6/29/2006 Sch. Creek <0.010 U 0.14 <0.0020 U 0.0017 B 0.0050 U 0.0050 U 0.012 B <0.0050 U 0.012 B <1.00020 U SW-38 Resample 7/18/2007 Reference IS 0.0034 J 0.0042 <0.0020	Sch. Creek <0.010 U 0.11 <0.0020 U 0.0013 B <0.0050 U <0.0050 U <0.0050 U <0.0067 B <1.0067 B <1.0067 B <0.00020 U SW-39 (TOTAL) 12/12/2006 Reference S <0.010 0.045 0.045	12/12/2006 Scheenberger Creek - west of Old Cahokia Watershed - 0.010 - 0.032 - 0.0020 - 0.010 - 0.0010 - 0.0050 - 0.011 - 0.0050 - 0.010 - 0.0050 - 0.010 - 0.0050 - 0.010 - 0.0050 - 0.010 - 0.0050 - 0.010 - 0.0050 - 0.010 - 0.0050 - 0.0	(mg/L) 0.36 -0.0102 0.59 0.019 0.0840 0.130 0.0022 Schoenbe AS (mg/L) 0.36 0.19 0.948 0.032 0.155 0.21 0.002 Cahokia AS (mg/L) 0.36 0.37 0.36 0.37 0.36 0.37 0.37 0.37 0.38 0.	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
Dissolved Arsenic Dissolved Garium Dissolved Cadmium Dissolved Cadmium Dissolved Copper Dissolved Selevium Dissolved Selevium Dissolved Selevium Dissolved Selevium Dissolved Selevium Dissolved Mercury Dissolved Mercury Dissolved Arsenic Dissolved Arsenic Dissolved Cadmium Dissolved Cadmium Dissolved Selevium Dissolved Arsenic Dissolved Selevium Dissolved Arsenic Dissolved Arsenic Dissolved Arsenic Dissolved Arsenic Dissolved Arsenic Dissolved Cadmium	SW-20 6/13/2006 Sch. Creek 0.0042 B 0.0850 0.0050 0.84 <0.00020 SW-20 6/13/2006 Sch. Creek 0.0042 B 0.082 <0.0050 0.84 0.0070 0.0070 SW-20 6/13/2006 Sch. Creek 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 1.000020 0.00020 1.000020 1.000020 1.000020 1.000020 1.000020 1.000020 1.000020 1.0000040 1.000020 1.000020 0.00440 1.000020 1.000020 0.00440 1.000020	0.0036 J 0.031 -0.0020 -0.010 0.0035 J -0.0056 -0.010 0.0025 J,B 0.035 B -0.0056 -0.011 -0.0056 B 0.081 -0.0050 U	Rose Creek	Rose Creek	SW-36 6/29/2006 Sch. Creek <0.010 U 0.14 <0.0020 U 0.0017 B na <0.0050 U 0.0078 B <0.0050 U 0.012 B <1.0050 U 0.012 C 0.012 C 0.002 U SW-36 Resample 7/18/2007 Reference [5] 0.003 J 0.003 J 0.003 J <0.0050 J	Sch. Creek	12/12/2006 Schoenberger Creek - west of Old Cahokia Watershed - 0.010 - 0.032 - 0.0020 - 0.010 - 0.0050 - 0.011 - 0.0050 - 0.01 J,B - 0.0020 SW-39 Resample 7/18/2007 Reference ¹⁸ - 40 feet east of SW- 38 - 0.0034 - 0.003 - 0.0033 - 0.003 - 0.0033 - 0.003 - 0.0033 - 0.0033 - 0.0033 - 0.0030 - 0.0030	(mg/L) 0.36 -0.019 0.080 0.09 0.019 0.0840 -0.130 0.0022 Schoenbe AS (mg/L) 0.36 -0.019 0.948 0.032 0.155 -0.019 0.002 Cahokia AS	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dissolved Arsenic Dissolved Corper Dissolved Corper Dissolved Corper Dissolved Corper Dissolved Corper Dissolved Corper Dissolved Corper Dissolved Corper Dissolved Mercury Dissolved Mercury Dissolved Mercury Dissolved Mercury Dissolved Mercury Dissolved Corper Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Selenium Dissolved Cadmium Dissolved Capper Dissolved Capper Dissolved Capper Dissolved Capper	-0,010 0,043 0,0055 0,0025 0,00086 <0,0050 -0,010 <0,0050 0,044 -0,00020 Sw-20 6/13/2006 Sch. Creek 0,0042 B 0,082 <0,0020 U <0,010 U <0,010 U <0,010 U <0,010 U <0,0050 U 0,076 B <0,00020 U Sw-45 (TOTAL)* 12/12/2006 Cahokia Wetland B 0,0044 1,0 0,0028 J 1,9 0,0040 1,9 0,0040 1,9 0,0040 1,9 0,0040 1,9 0,0040 1,9 0,0040 1,9 0,0040 1,9 0,0040 1,9 0,0040 1,9 0,0040 1,9 0,0040 1,9 0,0040 1,9 0,0040 1,9 0,0040	0.0036 J 0.031 -0.0020 -0.010 0.0035 J -0.0050 -0.010 0.0025 J,B 0.035 B -0.00020 SW-20/FD 6/13/2006 Sch. Creek 0.0050 -0.0010 -0.0050 U -0.0010 -0.0050 U -0.0050	Rose Creek	Rose Creek	SW-36 6/29/2006 Sch. Creek <0.010 U 0.14 <0.0020 U 0.0017 B <0.0050 U 0.012 B <0.0050 U 0.012 B <1.0050 U 0.012 B <0.0050 U SW-38 Resample 7/18/2007 Reference [5] 0.003 J 0.042 <0.0020 0.0033 J 0.003 J 0.003 J 0.003 J 0.0050 <0.010	Sch. Creek Sch. Creek -0.010 U 0.11 -0.0020 U 0.0013 B -0.0050 U -0.010 U 0.0050 U 0.0067 B -0.00020 U SW-39 (TOTAL) 12/12/2006 Reference SI -0.010 U 0.045 0.16 0.0026 J 0.021 -0.0050 -0.0050 -0.0050 -0.0050 -0.010	12/12/2006 Scheenberger Creek - west of Old Cahokia Watershed - 0.010 - 0.0020 - 0.010 - 0.0050 - 0.011 - 0.0050 - 0.011 - 0.0050 - 0.01 J,B - 0.00020 SW-39 Resample 7/18/2007 Reference ¹⁰ - 40 feet east of SW- 38 - 0.004 - 0.0050 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.0050 - 0.011	(mg/L) 0.36	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dissolved Arsenic Dissolved Garium Dissolved Cadmium Dissolved Copper Dissolved Copper Dissolved Selevium Dissolved Selevium Dissolved Selevium Dissolved Selevium Dissolved Selevium Dissolved Selevium Dissolved Mercury Dissolved Mercury Dissolved Arsenic Dissolved Cadmium Dissolved Cadmium Dissolved Selevium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Cadmium Dissolved Copper Dissolved Copper Dissolved Copper Dissolved Cadmium	SW-20 6/13/2006 Sch. Creek 0.0042 B 0.0850 0.0050 0.84 <0.00020 SW-20 6/13/2006 Sch. Creek 0.0042 B 0.082 <0.0050 0.84 0.0070 0.0070 SW-20 6/13/2006 Sch. Creek 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 1.000020 0.00020 1.000020 1.000020 1.000020 1.000020 1.000020 1.000020 1.000020 1.0000040 1.000020 1.000020 0.00440 1.000020 1.000020 0.00440 1.000020	0.0036 J 0.031 -0.0020 -0.010 0.0035 J -0.0056 -0.010 0.0025 J,B 0.035 B -0.0056 -0.011 -0.0056 B 0.081 -0.0050 U	Rose Creek	Rose Creek	SW-36 6/29/2006 Sch. Creek <0.010 U 0.14 <0.0020 U 0.0017 B na <0.0050 U 0.0078 B <0.0050 U 0.012 B <1.0050 U 0.012 C 0.012 C 0.002 U SW-36 Resample 7/18/2007 Reference [5] 0.003 J 0.003 J 0.003 J <0.0050 J	Sch. Creek	12/12/2006 Schoenberger Creek - west of Old Cahokia Watershed - 0.010 - 0.032 - 0.0020 - 0.010 - 0.0050 - 0.011 - 0.0050 - 0.01 J,B - 0.0020 SW-39 Resample 7/18/2007 Reference ¹⁸ - 40 feet east of SW- 38 - 0.0034 - 0.003 - 0.0033 - 0.003 - 0.0033 - 0.003 - 0.0033 - 0.0033 - 0.0033 - 0.0030 - 0.0030	(mg/L) 0.36	0.000000000000000000000000000000000000

Table 6-2a

Concentrations of Dissolved Metals (mg/L) in Surface Water Samples Compared to IEPA Water Quality Criteria

Old American Zinc Plant Site, Fairmont City, Illinois

Oate Collected:	SW-40 (TOTAL) 12/12/2006 Reference [5]	SW-40 Resample 7/18/2007 Reference ^[5] - 75 feet east of SW-38	SW-50 12/12/2006 Cahokia Watershed - Upgradient of Rose Creek Discharge Area	SW-TRC-3-S 7/19/2007 West end of Old Cahokia Watershed, adjacent to Schoenberger Creek channel		AS (mg/L)	CS CS (mg/L)
Dissolved Arsenic		<0.010	<0.010	<0.010		0.36	0.19
Dissolved Barium	0.052	0.065	0.036	0.11		_	-
Dissolved Cadmium	0.19	<0.0020	<0.0020	<0.0020		0.074	0.0043
Dissolved Chromium		<0.010	<0.010	<0.010		2.67	0.58
Dissolved Copper	0.019	< 0.010	< 0.010	<0.010		0.11	0.059
Dissolved Lead	< 0.0050	< 0.0050	< 0.0050	<0.0050		0.57	0.12
Dissolved Selenium	<0.010	<0.010	< 0.010	<0.010			0.005
Dissolved Silver	0.0015 J	0.0013 J,B	< 0.0050	<0.0050		_	-
Dissolved Zinc	45	0.019 J,B	0.0052 J,B	0.0088 J,B		0.61	0.11
Dissolved Mercury	< 0.00020	<0.00020	< 0.00020	<0.00020		0.0022	0.0011
Jor <: Compound not dete Compound detected at c Cch. Creek = Schoenberge S = Acute standard; See	ected above MDL concutration below report or Creek Table 6-2b for derivation	nic standard; BOLD and sha orting limit. on of hardness-dependent c ation of hardness-dependen	riteria.	IEPA acute standard.			
	et meadow (wetland) h	etween West Ditch Outfall a	nd onen water hahitat in	the Cahokia Creek Watersh	ed. Sample was not filtered		
31 - Sample collected in we		water habitat in the Cahokia		and Carlonia Orden Watersi	ou. outings that for interest.		
3] - Sample collected in we 4] - Samples collected at s				d (northeast of SW-34). San	nple was not filtered.		
4] - Samples collected at s 5] - Reference samples we			arona crock traterare.				
4] - Samples collected at s 5] - Reference samples we Samples collected in Decei	mber 2006 were not fil						

Table 6-2b Calculation of Hardness-Dependent Aquatic Life Standards 35 IAC Part 302.204

·····						Dissolve	d Standards			
		Waterbody	Dit	ch	Rose	Creek	Schoenbe	rger Creek	Cahokia W	atershed
		Hardness	92.5		110.0		195		690	
		in(Hardness)	4.53		4.70		5.27		6.54	
	AS	cs	AS	CS	AS	CS	AS	CS	AS	CS
Constituent	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)
Arsenic (trivalent,	360 X	190 X 1.0*=190					ľ			
dissolved)	1.0*=360		360_	190	360	190	360	190	360	190
Barium										-
Cadmium (dissolved)	X {1.138672- [(lnH)(0.04183	exp[A+Bln(H)] X {1.101672- [(lnH)(0.041838)]}*, where A=-3.490 and B=0.7852								
	B=1.128		8.47	0.97	10.22	1.11	19.0	1.69	74.5	4.28
Chromium (trivalent, dissolved)	X 0.316*, where	exp[A+Bln(H)] X 0.860*, where A=1.561 and B=0.8190	515	111	593	128	948	205	2669	578
Copper (dissolved)	exp[A+Bln(H)] X 0.960*,	exp[A+Bln(H)] X 0.960*. where A=-1.465 and	15.8	10.6	18.6	12.3	31.9	20.1	105.0	59.1
,	1.464 and B=0.9422	B=0.8545								
Lead (dissolved)	X {1.46203- [(lnH)(0.14571 2)]}*,	exp[A+Bln(H)] X {1.46203- [(lnH)(0.145712)]}*, where A=-2.863 and B=1.273	69.5	14.6	84.0	17.6	155	32.6	570	120
Selenium (dissolved)	D-1.273	5		5		5		5		5
Silver (dissolved)	1									
Zinc (dissolved)	exp[A+Bln(H)] X 0.978*, where A=0.9035 and B=0.8473	Exp[A+Bln(H)] X 0.986*, where A=-0.8165 and B=0.8473	112	20.2	130	23.4	210	38.0	614	111
Mercury (dissolved)	2.6 X 0.85*=2.2	1.3 X 0.85*=1.1	2.2	1.1	2.2	1.1	2.2	1.1	2.2	1.1

Sample ID:	SW-001	SW-005	SW-10	SW-36	SW-37	SW-34	SW-34-D
Date Collected:	6/29/2006	6/29/2006	6/29/2006	6/29/2006	6/29/2006	6/28/2006	6/28/2006
Location	East Ditch 1	East Ditch 1	Rose Creek	Sch. Creek	Sch. Creek	Cahokia Watershed	Cahokia Watershed
Hardness, as CaCO3	85	100	110	220	170	590	720
Average hardness	92.5			19	95	69	90

^{* =} conversion factor multiplier for dissolved metals

TABLE 6-3 BENTHIC MACRO-INVERTEBRATE TISSUE SAMPLES COMPARED TO TISSUE RESIDUE EFFECT LEVELS FORMER OLD AMERICAN ZINC PLANT FAIRMONT CITY, ILLINOIS REMEDIAL INVESTIGATION/FEASIBILITY STUDY

ID Location		DUE EFFECT ELS ^a	BT-SD-001 ^b East Ditch	HQ= Tissue/LOEC	BT-SD-005 East Ditch	HQ= Tissue/LOEC	BT-SD-006DUP East Ditch	HQ= Tissue/LOEC	BT-SD-008 Rose Creek	HQ= Tissue/LOEC	BT-SD-013 Rose Creek	HQ= Tissue/LOEC
ANALYTE	NOEC (wet wt)	LOEC (wet wt)	(mg/kg)		(mg/kg)		(mg/kg)		(mg/kg)		(mg/kg)	
Arsenic	3.6	4.2	0.068	0.02	0.077	0.02	0.029	0.01	0.031	0.01	0.104	0.02
Barium	NDA	NDA	0.149		0.109		0.034		0.501		0.167	
Cadmium	0.5	0.59	0.077	0.13	0.150	0.25	0.012	0.02	0.367	0.62	0.217	0.37
Chromium	1.44	1.67	0.025	0.02	0.032	0.02	0.008	0.005	0.027	0.02	0.035	0.02
Lead	5	5.22	0.401	0.08	0.351	0.07	0.044	0.01	0.818	0.16	0.234	0.04
Selenium	NDA	0.2	0.124	0.62	0.184	0.92	0.156	0.78	0.115	0.58	0.147	0.73
Zinc	NDA	11.12	4.11	0.37	8.35	0.75	3.37	0.30	28.22	2.54	5.444	0.49
1 111		Mean HQ		0.20		0.34		0.19		0.65		0.28

ID Location		IDUE EFFECT	BT-SD-022 Shoenberger	1	BT-SD-034 West Ditch		BT-SD-036 Shoenberger	HQ=	BT-SD-037 Shoenberger	HQ=	
				Tissue/LOEC		Tissue/LOEC		Tissue/LOEC		Tissue/LOEC	
ANALYTE	NOEC (wet wt)	LUEC (wet wt)	(mg/kg)		(mg/kg)		(mg/kg)		(mg/kg)		
Arsenic	3.6	4.2	0.031	0.01	0.031	0.01	0.18	0.04	0.03	0.007	
Barium	NDA	NDA	0.251		1.820	~-	2.22		0.14		
Cadmium	0.5	0.59	0.003	0.004	0.084	0.14	0.02	0.03	0.01	0.01	
Chromium	1.44	1.67	0.062	0.04	0.008	0.01	0.03	0.02	0.03	0.02	
Lead	5	5.22	0.053	0.01	0.037	0.01	0.08	0.02	0.03	0.005	
Selenium	NDA	0.2	0.137	0.68	0.082	0.41	0.12	0.60	0.10	0.52	
Zinc	NDA	11.12	1.971	0.18	12.66	1.14	2.22	0.20	2.22	0.20	
		Mean HQ		0.15		0.28		0.15		0.13	

NDA = No data available.

Tissue was analyzed on a dry weight basis. Percent moisture was not available from the laboratory.

Values were converted to wet tissue weight assuming that benthic invertebrate moisture content of 83.3 (by mass) percent (Pietz et al., 1984, as cited in EPA, 1999).

Ctissue (wet weight) = Ctissue (dry weight) x (1 - % water)

Mercury and silver were not positively detected in tissue samples.

Duplicate samples were averaged.

Bold indicates detected concentration; non-detects presented at one-half the detection limit.

NOEC = No observed effect concentration.

LOEC = Lowest observed effect concentration.

Shading and underline indicates exceeds LOEC.

a = See Appendix E for derivation of tissue residue effect levels.

b = Upgradient location in East Ditch (at origin).

HQ = Hazard Quotient

Bold indicates detected concentration; non-detects presented at one-half the detection limit.

Bold text indicates detected concentration; one-half detection limit used as proxy value for non-detects

Table 6-4 Lines of Evidence for Assessing Impacts on Aquatic Ecosystems Former Old American Zinc Plant Fairmont City, IL REMEDIAL INVESTIGATION/FEASIBILITY STUDY

	 		· · · · · · · · · · · · · · · · · · ·		Sample	No./Location				
	SD-01	SD-02	SD-05	SD-06 & Duplicate	SD-08 & Duplicate	SD-13	SD-34	SD-22	SD-36	SD-37 Schoenberger Creek
Line of Evidence	East Ditch 1 at origin	East Ditch 2		East Ditch 1 downstream of East Ditch 2	Rose Creek at discharge of East Ditch 1	Rose Creek upstream of Collinsville Road	Shallow marsh discharge of West Ditch 1	Schoenberger Creek upstreram of Collinsville Road	Schoenberger Creek at discharge of the Engineered Ditch	downstream of discharge of the Engineered Ditch
Surface Water Chemistry				<u> </u>		T				
	Ephemeral -		Ephemeral - zinc	ı	1	Ephemeral - zinc (acute &				
Exceeds WQC	zinc (chronic)	Ephemeral	(chronic)	None (ephemeral)	None (ephemeral)	chronic)	None	None	selenium (chronic)	None
Sediment Chemistry & Bioassay										
PEC-Q	11.0	2.57	24.5	3.80	32.2	9.95	31.5	1.31	0.63	1.27
Bioassay Survival	0	l .	0	0	0	0	0	!	0	
Native Species Present during Bioassay	Yes		No	Yes	Yes	No	L		Yes	
Benthic Community Survey										
# Organisms	53	24 (1 sweep)		55	62	40	12	66	60	55
# Taxa	16	6	16	15	16	8	5	18	16	13
MBI	6.49	6	6.55	6.44	6.94	6	8.33	6.7	6.67	6.58
TBI	6.71	5_	7.13	6.75	7.29	6	9	7	6.9	7
Benthic Tissue Chemistry										
Tissue LOEC TRV HQ		ĺ								
Maximum HQ	0.62	ļ.	0.92	0.78	2.54	0.73	1.14	0.68	0.6	0.52
Mean HQ	0.2		0.34	0.19	0.65	0.28	0.28	0.15	0.15	0.13

Blank cell indicates line of evidence not performed at location

HQ = Hazard quotient;LOEC = Lowest observed effect concentration, TRV = tissue residue effect level value, see Table 6-3

PEC-Q = Probable Effect Concentration Quotient; see Table 6-1.

MBI = Macroinvertebrate Biotic Index; See Table 5-6

TBI = Tolerance Biotic Index, see Table 5-6

Ephemeral indicates surface water body is ephemeral and channelized drainage feature

WQC = water quality criteria

HQ : Hazard Quotient

HQ = Hazard Quotien LOE(; = Lowest obser a = See; Appendix F 2 L = See; Appendix E Ic	ved effect concentration for derivation of estima	ated tissue concent	Italions																												
Facility Drainage Dito		ŗ <u> </u>													 _		,														
	LOEC TISSUE RESIDUE EFFECT LEVEL®		HQ=		HQ: Tiesue/LOE		HO- TISSUATLOEC		HQ= Tissue/LOI C	E	HO= Tissus/LOEC		HQ= Tiesue/LOEC		HQ= Tissue/LOEC		HQ= Tissue/LOEC	 	HQ=	7.	HQ=		HQs. Timue/LQEC								
Sample (D) Location	(mg/kg wet)	SD-02-0.5 East Ditch 2	TIBIO LOCC	SD-07-0.5 West Ditch 2		SD-07-0.5/FD West Ditch 2	┨	SD-23-0.5 West Drich 1	_ ` _	SD-23-0.5/FD West Ditch 1		SD-74-0 5 Weel Ditch 1		SD-26-0.5 West Ditch 1		SD-25-0.5/FD West DHch 1		SD-26-0.5 West Ditch 1		SD-27-0 5 West Ditch 1		SD-28-0.5 West Ditch 1									
Cadmium Lead	9 59 5 22	0.01575144 0.1889106	102	U-12426347 U-444554 19 56405	0.04	0.02428347 0.363726	7.67	. 9853203 0.343519 8.2999	0.07	0.1767572 0.363726	0.07	0.413475.4 1.131592 23.714	27	0.01772037 0.666831 4.03138	5 05 6 i	0 4266016 0 60621 56 32375	01	104203094 111636767	2-3	0 94903491 5 1980286 11 857	9 07 0 04	0 03347161 1: 1475111	001								
Rose Creek Investigat	ve Samples	Meur >	+0 1115	19 58405	76	1,3 6,3556		9 2999	07	5 602/5	03	23/13	1 2	4 03 036	02		1 2	12 44985	0.1	11897		8 hig275	0.77								
	LOFC TISSUE		T 1		HQ:: Tisetia/LOE			T	HQs		HOs		HO=		HQs		T				HQ _*										
Sample ID:	RESIDUE EFFECT LEVEL ^b (mg/kg wel)	SD-09-0.5	HQ= Treaue/LOEC	en.41	C	SD-41-D	HQ= Tlesue/LOEC	ED 42	C C	ED 1005	HO= Tissus/LOEC	SD-11-0 5	HQ= Tiesue/LOEC	SD 12-0.5	TresuelLOEC	9D.12/ED	HQ= Tiesus OEC	SD.43	HQ= Teaue/LOEC	SD-44	insue/LOEC										
Location Cadmium	0.50	Rose Creek 0.065631 363726	- 01	Rose Creek 0 1050095 0 828487		Rose Creek	- 63	Rose Creek 9.3347181	0.6	Rose Creek 0 1181358	0.2	Rose Creek	0.03	Rose Creek 0 01837668 0 0242484	263	Rose Creek 1 02559606	0.74	Rose Creek 0 0853203	0.1	0.05184849 0.1518525	0.09										
Zin.	77.12 5.22	8 s-275 Mean b	- 07 - 08	0.828487 18.37835	0.2	0 525382 14 2284	1 1	7 545589 71142	01	0.1181358 0.1737802 7.70705	<u>0.03</u>	0.019/03290 0.06021 2.84568	93	1 363555	0.1	19385933 2 frt569	1.5	0.0853203 0.1172036 4.327935	0.4	3 142176	0.00										
Rose Creek Upstream	Samples	wear. F	· · · · · ·		- 47				-1 -2	 					0.05				92 1												
1	LOFC TISSUE RESIDUE EFFECT LEVEL®		1 1		Ho=			1	но∍																						
Sample ID	(mg/kg wet)	SD-03-0 5	HQ= Tiesue/LOEC	SD-04-0.5	HQ= Tresue/LOE	ASD-1 Facility, east of	HO- Tiesua/LOEC	RSD-2	Tissue/LOE	RSD-3	HQ= Tissue/LOEC	R90-4	HQ= Tisque/LOEC																		
Location		Oltch along Kingshwy		Rose Creek (upstreum	,	Kingehighway & south of General Chemical	·	Facility, east of Kingshighway & south General Chemical	of	Facility, west of Kingshighway & south of Former Swift Ag Chem		Facility, west of Kingshighway & south Former Swift Ag Chem . 005497469	of																		
Cadm _{ium}	5 59 5 22	Cingshwy 0.02493976 0.1560764	0.04	0.014266015 1.0565796 0.652135	6-91 6-01	0.003215919 0.1252834 0.4209235	0.01	0.706497469 0.1576146	0.01	0.00328156 +0.767866 +-486137	991 591	005497460 01273041 094850	5/91 0:02																		
Rose Creek Outtail Inv	atigative Sempler	2 312115 Wear H	10 UVS	0.652135	U 03	0.4209235	11 02	7776/05	0 e7 2 s4	·· 48£137	0.04	⊍485€	0 ve																		
Rose Creek Outfall Inv	RESIDUE		40		HO _E		7		HQs		HQ-		HQ=		lto.		40-		ш.												
Sample ID:	EFFECT LEVEL* (mg/kg wet)	SD-14-0.5	Tissue/LOEC	SD-15-0.5	THEUP/LOE	SD-16-0.5	HQ= Tissue/LOEC	SD-17-0.5	Tissue/LOE	SD-18-0.5 Rose Creek Outlail	Tissue/LOEC	TRC-2-S-0-6 Old Cahokia Watershe		TRC-2-5-8-10	Tiesue/LOEC	TRC-2-9-12-14	Tipoue/LOEC	TRC-2-S1-0-6	resue/LOEC												
Cadmium	5 22	9 00/787572 0 08689 //	0.01	Rose Creek Outfall 2 (XX4896694	7.00	Rose Creek Outtall () () () () () () () () () () () () () (9.00	Rose Creek Outlett	0.02	Rose Crest Outfall (+017-6406 ++0424347	- Jua	Old Cahokja Watershe	1.45	Old Cahokia Watershed 1 278251 424347	2,34	Old Caholus Watershed	0.16	01d Cahokia Watershed 0.1903299 0.242494	0.32												
Zinc	11 12	∪ 652135 Mean H	0.6 Q 1.2	0.7464761 2.438739	0 pt 0.02	0 162999 0 162999	201	0.0329312 1.007845	1.99	0.4802.885	04	8 de 275	- 8: - 27	11 µ57	1 07	3 9 (28)	2.35 0.24	5 09851	∪ 46 ∪ 26												
West Ditch Outfell Inve											T=-				\top		7														
	LOFC TISSUE RESIDUE EFFECT LEVEL*		HQ= Treeue/LOEC		HQ= Tipetue/LOE		HO= Tissue/LOEC	:{	HQu Tresue/LOE	.	HO= Tissue/LOEC		HQ= Treeve/LOEC		HQ= Tissue/LOEC		HQ= Tissus/LOEC														
Sample ID Location	(mg/kg wet)	SD-29-0.5 West Drich I Outla	41	SD-30-0.5 West Ditch 1 Outfall		SD-31-0.5 West Ditch 1 Outlall		SD-32-0-5 West Ditch 1 Outfall 0.34526539	- c	SD-33-0 5 Weet Ditch 1 Outtail		50-38 Cahokla Watershed 0 0/18/34		SD-39 Cahokia Watershed		SD-40 Cahoka Watershed (+06497459															
Lead Zinc	5 22	0.02822133 0.0767866 2.3714	2	0.4725432 0.1030567 2.25283	0.2	0.02190192 0.01050764 4.663516	00	1759099 3 79424	- 100 - 100 - 100	0.554331646 0.55929522 0.3497815	0.002	0.0918834 0.0687938 5.5999	691	0.6 164,0775 0.6484968 2.074975	0.03	06497459 00383935 5 276365	0.01 0.01														
West Ditch Outlail Inve	stigative Samples (col	Mean Hi htinued)	0 019		<u>G</u> 1		0.2		0.2		0.01		03		2.07		2														
1	LOEC TISSUE RESIDUE		HQ=		HQ=		_	1	HQs Tiesue/LOE			. –	1 7		1 100	-	HO-	1	но-												
Sample ID	EFFECT LEVEL* (mg/kg wel)	SD-45	Tiesue/LOEC	SD-46	Tiesue/LOE	SD-47	HO= Tiesua/LOEC	SD-40	T lesue/LOE C	TWD-02-C-0-6	Thought OEC	TWD-02-C-6-9	Tissue/LORC	TWD-02-C-6-9 DUP	TISSUE/LOEC	T WD-02-S-0-6	Tissus/LOEC	_ TWD-02-S-6-8	insue/LOEC												
Sample ID Location Cadmium		U03675336		Cahokia Wetland	- 22	Cahokie Wetland 0560679 0848664	0.10	Cahokie Wetland -0.05841159 -0.1353869 -15.4141	£ 1	Old Cahokla Watershed 0.046598/0 0.0424347	9 98	Old Cahokia Watershed	0.02	Old Cahokie Watershed 0.00787572 0.0242484	0.01	Old Cahobia Watershed 0 (918834 -1 1525382	<u> </u>	0id Cahokia Watershed 102201454 119424347	ı) u a												
Zinc	11 12	9 4856 Mean H	0 03	13 63656	2.02	14 82125	0.5	5 1353959 15 4141	1 1 1 5 1 5	7 1142	953 9 <u>6</u>	1 176415	204	1 126415	31	9 4856	0.3	2 193545	0.0a												
West Ditch Outfall Refe											τ τ				T 1		1						1						Τ		\neg
	LOEC TISSUE RESIDUE EFFECT LEVEL®		но₌		HQ= Tmste/LOE		HOx Tissue/LOEC		HQ. Tissue/LOE		HQ=		но=		HQ*		HQ=		HQ=		HQ=		HO ₂		HQ-		HQ= Tissue/LOEC		HQ=		HQ: Tresue/L
Sample ID:	(mg/kg wet)	TWD-1-N-0-6 Old Cahokia Watershed	Tiesue/LOEC	TWD-1-N-6-#	C	TWD-1-C-0-6	No. Insulptoec	TWD-1-C-6-10	c	TWD-1-S-0-6	Tissue/LOEC	TWD-1-S-6-9-5	Tissue/LOFC	TWD-02-N-0-6	Tissue/LOEC	TWD-02-N-6-7	Tissue/LOEC	TWD-03-N-0-6		(WD-03-N-6-8	heue/LOEC	TWD-03-C-0-6	Tiesus/LOEC	TWD-03-C-4-8.5	Tissue/LOEC	TWD-02-5-0-6	1	1WD-63-5-6-8	, , , , , , , , , , , , , , , , , , ,	TWD-63-5-10-12	
Location Cadmium	0.58	0.036(9705 0.026289s	υu€	Old Caholua Watershed	370	Old Cahokia Watershed ⊕ 32887764 ⊕ 91576146	11.08	Old Cahokia Watershed	9.02	Old Cahokie Watershed - 059-676 - 0 0788073	1, 10	Old Cahokia Watershet	0.02	Old Cahokia Watershed 0:02100192	O gal	Old Caholus Watershed - 32867764 - 0 1262691	€ 95	Old Cahokie Watershed 0.01637F68	0 33	0.01181358 0.01050764	U-72	Old Cahokla Watershed	9.03	0 01378251 1 1282896	⊕ 02	Old Cahokia Watershi	- · · 03	Old Cahokia Watershed	A mg	Old Cahokia Watershe 11 (1124698) 5 76669936 5 770705	
/inc	11 12	1 1867 Mean HC	0.01	0.00646624 2074975	2 Co1	1 719265	0 (03 	1 06713	0.001	0.0788073 2.72711	0.02	0-00684465 	0.003	9 v282898 1 x6713	0.01	1 06713	0.35	1 126415	0.15 0.05	7.71142	- 96 - 93	1 65566	906	7707-16	9.07	1 47264	0.15	5 7707 15	1 00	:- 7707US	4
Rose Creek Outfall Refe	LOEC TISSUE		1 1		7				7						7																
Sample (D	FFECT LEVEL*	SD-50-0-6	HQ=	SD-50-8-10	HQ.	SD-51-DITCH-0-6		SD-51-DITCH-0-10	HO⇒			****		TRC-3-S-7-9	HO																
Sample ID	(mg/kg wet)	50-50-0-6	Tiesus/LOEC	SD-56-8-10	C C	Old Cattokia Watershed -	HO= Tissue/LOEC	SD-51-DITCH-8-10 Old Cahokia Watershed upgradient of Rose Cree	Tissue/LOE	SD-51-DITCH-12-14 Old Cahokla Watershed - upgradient of Rose Creek	HQ= Tissus/LOEC	TRC-3-S-0-6	HOx Tissue/LOEC	TRC-3-S-7-9	HQ- Tissue/LOEC																
Location		Old Caholua Creek		Old Cahokia Creek		discharge area, adj to Milan Landfill	n	discharge area, sdj to Mil Landfill	lem .	discharge area, adj to Milam Landilli		Old Cahokia Watershet		Çid Cahokia Watershed																	
Cadmium Lead	5 22	5 (1443882 0 (1172006 0 462423	0.005 0.005	0 01443882 0 01859.44 0 652135	0 00 0 004	0 065631 0 060621	01	0.2165823 0.1319455 1.837835	0.03	0.74622/325 0.323317 0.94856	0.08	0.02362716 0.01696353 0.662135	0000	0.00767966 0.00767966 0.94866	0.07																
Impoundment Samples		Vean HC	2 0 02	0.032.00	000	1 126415	5.07	837833	2	0.44890	0.08	0.652135	03	(1940.0)	<u>0.06</u>																
	LOEC TISSUE RESIDUE																														
Sample (D)	RESIDUE EFFECT LEVEL* (mg/kg wel)	TRC-1-No-	HQ= Tresue/LOEC	TRC-1-N-6-8	HQ:: Tiseus/LOE	TRC-1-S-0-6	HQ= Tiesue/LOEC	TRC-1-S-0-6-D	HQ⇒ Theeue/LOE		HQ= Tissue/LOEC	TRC-2-N-0-6	HQ× Tresue/LOEC	TRC-2-N1-0-6	HQ= Tissue/LOEC	TRC-2-N1-6-8	HQ= Tieque/LOEC	TRC-2-C-0-6	HQ= feeue/LOEC	TRC-2-C-10-12	HQ=	TRC-3-N-0-6	HQ _E Tissue/LOEC	TRC-3-N-0-6/FD	HO= Tissus/LOEC	TRC-3-N-8-10	HQ= Tissus/LOEC				
Location		TRC-1-N-0-5 Old Cahokia Watershed	<u> </u>	Old Cahoka Watershed		Old Cahokin Watershed		Old Cahokia Watershee	i	TRC-1-S-6-8 Old Cahokia Watershed	1	Old Cahokia Watershee	.[].	Old Caholus Watershed		Old Cahokia Watershed	1	Old Cahokis Watershed	Old	d Cahokia Watershed		Old Caholus Watershed	<u></u>	nd Cahokia Watershed	<u> </u>	Old Cahokia Watersh	ed				
Cadmium Lead	0 5g 5 2g	0.00767966	9 et 9 001	0.002690871	0.005	0:005316111 -0:01515525	0.00	0.004856694	0.01	0.004856694	9.001	7.21941E-05 J.00181863	0.000	6.21368E-05 0.00222277	0.0001 0.0004	9 5165E 05 0:00242484	0.0002 37005	0:303150286 0:00666831	0 on o 001	0.0323312	0.791	0.001315029 0.001434697 0.1048997	0.003 0.003	0.00065631 0.00181863 0.02786395	0.0001	8 26388E-06 0 000848694 0 01126415	0.0001				
(A) (A)	11 12	0.403138 Mean HC	0.04	0 260854	0.00	∋ 438700	0.02	438709	J + 04	0.414095	0.08	0.0725283	0.701	0.03142105	9 001 9 001	0.6320139	0.901	0 142284	0.01	0.04683815	2005	17 - 12 4 DMA1	0.000	ŭ ⊕279639E	0.001	V	⊕0004				
Schoenberger Creek Car										٦																					
Schoenberger Creek Sar	LOEC TISSUE]		T				1																						
Schoenberger Creek Sa		SD-20-0.5	но₌	SD-20-0,5/FD	HQ:: Tiesua/LOE	SD-21-0.5	MOs Theorem DET	SD-52	HQui Tresue/LOE C																						

Figures

Facility Area Boundary
Approximate Site Area Boundary

			ENTACT & ASSOCATES, LLC		•			AMERICAN FARMONT C		
					ENT	AC		CILITY A		
100					Desirate) ar	PHE	1/16/06	00000 ST	PAT	1/11/00
					DAMEN BA	MAC	1/14/04	MPRIMED IN	PAT	1/15/00
DATE	BY	CHK'DIAPR'DI	82/800/8	NC	1":0.5MI		C-1727	FIGURE 1		

Notes:

- = Medium to High Potential for Exposure; evaluated in BERA
- O = Identified as Incomplete Exposure
- = Ephemeral, channelized drainage; limited aquatic habitat provided.

Fish were not observed in any of the sampled waterbodies.

Figure 4: Ecological Conceptual Site Model
Baseline Ecological Risk Assessment
Former Old American Zinc Plant Site

RECEPTORS

Figure 5
Regression Analysis of Benthic Tissue and Sediment Concentrations

Cd - Sediment

R2 = 0.6149 Slope = 0.00121 P-value = 0.00725

Figure 5 (continued)
Regression Analysis of Benthic Tissue and Sediment Concentrations

ATTACHMENT A SITE PHOTOGRAPHS

 PHOTOGRAPH:
 1
 PHOTOGRAPHER:
 Jeff Stofferahn

 DATE/TIME:
 June 28, 2006
 0745

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS
SUBJECT: Mid section of East Ditch #2, facing east.

PHOTOGRAPH: 2 PHOTOGRAPHER: Jeff Stofferahn

DATE/TIME: June 28, 2006 0745

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Mid section of East Ditch #2, facing west.

PHOTOGRAPH: DATE/TIME:

PHOTOGRAPHER:

Jeff Stofferahn

PROJECT: SUBJECT:

June 28, 2006 0745
Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS
Mid section of East Ditch #2, east of Photo #1 location, facing east.

PHOTOGRAPH: DATE/TIME:

PHOTOGRAPHER:

Jeff Stofferahn

PROJECT:

June 28, 2006 0845

SUBJECT:

Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

East Ditch #1, south of confluence with East Ditch #2. Sample location SD-CT-06, macro invertebrate survey/sampling.

PHOTOGRAPHER: Jeff Stofferahn PHOTOGRAPH: June 28, 2006 0845
Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS
East Ditch #1, south of confluence with East Ditch #2. Sample location SD-CT-06. DATE/TIME:

PROJECT: SUBJECT:

PHOTOGRAPH: PHOTOGRAPHER: Jeff Stofferahn June 28, 2006 0935
Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS
East Ditch #1. Sample location SD-CT-01, facing south. DATE/TIME: PROJECT: SUBJECT:

 PHOTOGRAPH:
 7
 PHOTOGRAPHER:
 Jeff Stofferahn

 DATE/TIME:
 June 28, 2006
 0935

DATE/TIME: June 28, 2006 0935
PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS
SUBJECT: East Ditch #1. Sample location SD-CT-01, facing NE.

PHOTOGRAPH: 8 PHOTOGRAPHER: Jeff Stofferahn

DATE/TIME: June 28, 2006 1020

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS
SUBJECT: East Ditch #1, immediately SE of East Ditch #2 confluence. Sample location SD-CT-05. Facing south.

PHOTOGRAPH: DATE/TIME:

PHOTOGRAPHER: June 28, 2006 1100

Jeff Stofferahn

PROJECT:

Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS
Rose Creek, along south side of site. Sample location SD-CT-08, facing SE. SUBJECT:

PHOTOGRAPH:

PHOTOGRAPHER:

Jeff Stofferahn

DATE/TIME: PROJECT:

June 28, 2006 1100

Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS
Rose Creek, along south side of site. Near sample location SD-CT-08, facing west. SUBJECT:

PHOTOGRAPH: 11 PHOTOGRAPHER: Rhonda Regester

DATE/TIME: June 28, 2006 1545

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Old Cahokia Creek watershed, west of West Ditch Outfall. East of sample location SD-C-034 (at edge of open water), facing west.

PHOTOGRAPH: 12 PHOTOGRAPHER: Rhonda Regester

DATE/TIME: June 28, 2006 1545

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Old Cahokia Creek watershed, west of West Ditch Outfall. At sample location SD-CT-034, facing east.

PHOTOGRAPH: 13 PHOTOGRAPHER: Jeff Stofferahn
DATE/TIME: June 29, 2006 0850

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Schoenberger Creek, at west outfall of Old Cahokia Creek watershed to north. Sample location SD-CT-36.

PHOTOGRAPH: 14 PHOTOGRAPHER: Jeff Stofferahn
DATE/TIME: June 29, 2006 0850

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Schoenberger Creek, at west outfall of Old Cahokia Creek watershed to north. Sample location SD-CT-36. Facing ENE.

PHOTOGRAPH: 15 PHOTOGRAPHER: Jeff Stofferahn
DATE/TIME: June 29, 2006 0935

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Schoenberger Creek, downstream of west outfall of old Cahokia Creek watershed. Sample location SD-CT-37, facing NW.

PHOTOGRAPH:

DATE/TIME:

DATE/TIME:

PROJECT:

Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT:

Schoenberger Creek, downstream of west outfall of Old Cahokia Creek watershed. Sample location SD-CT-37, facing NE.

PHOTOGRAPHER: Jeff Stofferahn PHOTOGRAPH: June 29, 2006 Approx. 1650
Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS DATE/TIME:

PROJECT: East Ditch #1, near sample location SD-CT-01, looking south. SUBJECT:

PHOTOGRAPH: PHOTOGRAPHER: Jeff Stofferahn DATE/TIME: June 29, 2006 Approx. 1650 PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS SUBJECT: East Ditch #1, roughly 200 feet SSW of sample location SD-CT-091, looking SSW

PHOTOGRAPH:

PHOTOGRAPHER:

Jeff Stofferahn

DATE/TIME: PROJECT: SUBJECT:

June 29, 2006 Approx. 1650
Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS
East Ditch #1, roughly 300 feet SSW of sample location SD-CT-091, looking SSW

PHOTOGRAPH: DATE/TIME:

20

PHOTOGRAPHER:

Jeff Stofferahn

PROJECT:

SUBJECT:

June 29, 2006 Approx. 1650
Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

East Ditch #1, at culvert approximately 750 feet SSW of sample location SD-CT-01, looking NNE.

PHOTOGRAPH: DATE/TIME:

PHOTOGRAPHER: 21

PROJECT:

June 29, 2006 Approx. 1650
Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS
East Ditch #1, at culvert approximately 750 feet SSW of sample location SD-CT-01, looking SSW. SUBJECT:

Jeff Stofferahn

PHOTOGRAPH: DATE/TIME:

PHOTOGRAPHER:

June 29, 2006 Approx. 1650
Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

PROJECT: SUBJECT: East Ditch #1, at culvert approximately 250 feet NNE of confluence with East Ditch #2, looking NNE.

PHOTOGRAPH: DATE/TIME:

PHOTOGRAPHER:

June 29, 2006 Approx. 1650
Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS
East Ditch #1, at culvert approximately 250 feet NNE of confluence with East Ditch #2, looking south. PROJECT: SUBJECT:

PHOTOGRAPH:

PHOTOGRAPHER:

Jeff Stofferahn

DATE/TIME: PROJECT:

24 June 29, 2006

SUBJECT:

Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

East Ditch #1, at north end of culvert immediately north of confluence with East Ditch #2, looking NNE.

PHOTOGRAPH:

PHOTOGRAPHER:

Jeff Stofferahn

DATE/TIME: PROJECT:

June 29, 2006 Approx. 1650

Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

East Ditch #1, at south end of culvert at confluence with East Ditch #2, looking SW. Sample location SD-CT-05 in mid-photo. SUBJECT:

PHOTOGRAPH:

26

PHOTOGRAPHER:

Jeff Stofferahn

DATE/TIME:

June 29, 2006

PROJECT:

Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT:

East Ditch #1, at culvert at confluence with East Ditch #2, looking east at East Ditch #2.

PHOTOGRAPH: 27 PHOTOGRAPHER: Jeff Stofferahn
DATE/TIME: June 30, 2006 Approx. 0815

DATE/TIME: June 30, 2006 Approx. 0815
PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Snapping turtle in Rose Creek near bioassay sample point SD-CT-013.

PHOTOGRAPH: 28 PHOTOGRAPHER: Jeff Stofferahn

DATE/TIME: June 30, 2006 0830

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Collecting bioassay sample at location SD-CT-013 in Rose Creek.

PHOTOGRAPHER: Jeff Stofferahn PHOTOGRAPH: DATE/TIME: June 30, 2006 0850 PROJECT:

Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS Bioassay sample at location SD-CT-013 in Rose Creek. SUBJECT:

PHOTOGRAPH: 30 PHOTOGRAPHER: Jeff Stofferahn DATE/TIME: June 30, 2006 1150 PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS SUBJECT: Open area between West Ditch outfall and Old Cahokia Creek Watershed pond. Approx 160 feet NNW of outfall, facing NNW.

PHOTOGRAPH: 31 PHOTOGRAPHER: Jeff Stofferahn

DATE/TIME: June 30, 2006 1150

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Approximately 160 feet NNW of West Ditch outfall, looking SSE.

PHOTOGRAPH: 32 PHOTOGRAPHER: Jeff Stofferahn

DATE/TIME: June 30, 2006 1200

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Plant community study reference site. Storm water culvert on north side of Collinsville Road.

PHOTOGRAPH: DATE/TIME: PROJECT:

SUBJECT:

PHOTOGRAPHER:

June 30, 2006 1210
Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS
Plant community study reference site. Approx. 140 feet W of culvert, facing NNW.

PHOTOGRAPH: DATE/TIME:

PHOTOGRAPHER: 34

Jeff Stofferahn

PROJECT:

June 30, 2006 1210
Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS
Plant community study reference site. Approx. 140 feet W of culvert, facing north. SUBJECT:

PHOTOGRAPH: DATE/TIME:

PHOTOGRAPHER: June 30, 2006 1210

Jeff Stofferahn

PROJECT: SUBJECT:

Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

Plant community study reference site. Approx. 140 feet W of culvert, facing ESE. Culvert is at base of large tree in center-left of photo.

PHOTOGRAPH: DATE/TIME:

PHOTOGRAPHER:

Jeff Stofferahn

PROJECT:

June 30, 2006 Approx. 1225
Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS
Plant community study site at Rose Creek outfall. Approx. 150 feet N of outfall, facing N. SUBJECT:

Jeff Stofferahn PHOTOGRAPH: PHOTOGRAPHER: June 30, 2006 Approx. 1225
Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS DATE/TIME: PROJECT:

Plant community study site at Rose Creek outfall. Drum carcasses along flow path roughly 200 feet NNW of outfall. SUBJECT:

PHOTOGRAPH: PHOTOGRAPHER: Jeff Stofferahn DATE/TIME: June 30, 2006 Approx. 1225
Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS June 30, 2006

PROJECT: SUBJECT: Plant community study site at Rose Creek outfall. View of flow path between two study transects, NNW of outfall.

PHOTOGRAPH: 39 PHOTOGRAPHER: Jeff Stofferahn

DATE/TIME: June 30, 2006 Approx. 1225

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Plant community study site at Rose Creek outfall. View of flow path between two study transects, NNW of outfall.

PHOTOGRAPH: 40 PHOTOGRAPHER: Jeff Stofferahn

DATE/TIME: June 30, 2006 Approx. 1225

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Plant community study site at Rose Creek outfall. Transect study area approx. 300 feet NNW of outfall, facing NNW

PHOTOGRAPH: 41 PHOTOGRAPHER: Jeff Stofferahn

DATE/TIME: June 30, 2006 Approx. 1225

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Plant community study site at Rose Creek outfall. Transect study area approx. 300 feet NNW of outfall, facing NNW

PHOTOGRAPH: 42 PHOTOGRAPHER: Jeff Stofferahn

DATE/TIME: December 12, 2006 1105
PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Sample location SW/SD-45 in wet meadow downgradient of West Ditch Outfall. Looking NW.

PHOTOGRAPH: 43 PHOTOGRAPHER: Jeff Stofferahn
DATE/TIME: December 12, 2006 1105

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Sample location SW/SD-45 in wet meadow downgradient of West Ditch Outfall. Looking SE (outfall point in background).

PHOTOGRAPHER: PHOTOGRAPH: Mike Carlson

DATE/TIME:

December 12, 2006 1115
Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS PROJECT:

SUBJECT: Collecting sediment sample at location SW/SD-38, at southern edge of open water in Cahokia wetlands complex. Looking NW.

PHOTOGRAPH: 45 PHOTOGRAPHER: Jeff Stofferahn DATE/TIME: December 12, 2006 1125

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Sample at location SW/SD-39, at southern edge of open water in Cahokia wetlands complex. Looking NW.

PHOTOGRAPH: 46 PHOTOGRAPHER: Jeff Stofferahn

DATE/TIME: December 12, 2006 1125

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Sample at location SW/SD-39, at southern edge of open water in Cahokia wetlands complex. Looking NW.

PHOTOGRAPH: 47 PHOTOGRAPHER: Mike Carlson
DATE/TIME: December 12, 2006 1135

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS
SUBJECT: Collecting sediment sample at location SW/SD-40, at southern edge of open water in Cahokia wetlands complex. Looking N.

PHOTOGRAPH: 48 PHOTOGRAPHER: Jeff Stofferahn

DATE/TIME: December 12, 2006 1350

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT:

Sample location SW/SD-41, Rose Creek at confluence with West Ditch, SW corner of Site. Rose Creek culvert under access point to CSX terminal in background. Looking ENE.

PHOTOGRAPH: 49 PHOTOGRAPHER: Mike Carlson

DATE/TIME: December 12, 2006 1445

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Sample location SW/SD-43, Rose Creek roughly 230 feet upstream (SE) of Collinsville Road.

PHOTOGRAPH: 50 PHOTOGRAPHER: Jeff Stofferahn

DATE/TIME: De

December 12, 2006 1445

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Sample location SW/SD-43, Rose Creek roughly 230 feet upstream (SE) of Collinsville Road. Looking W.

PHOTOGRAPH: 51 PHOTOGRAPHER: Mike Carlson
DATE/TIME: December 12, 2006 1445

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Sample location SW/SD-43, Rose Creek approximately 230 feet upstream (SE) of Collinsville Road. Looking W.

PHOTOGRAPH: 52 PHOTOGRAPHER: Jeff Stofferahn
DATE/TIME: December 14, 2006 0910 - 0920

DATE/TIME: December 14, 2006 0910 - 0920
PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Wet meadow between West Ditch outfall and open water of Cahokia wetlands complex. Near outfall, looking NW.

PHOTOGRAPH: 53 PHOTOGRAPHER: Mike Carlson

DATE/TIME: December 14, 2006 0910-0920

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Wet meadow by West Ditch outfall, looking NW. Panorama with photos 54, 55 and 56.

PHOTOGRAPH: 54 PHOTOGRAPHER: Jeff Stofferahn

DATE/TIME: December 14, 2006 0910 - 0920

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Wet meadow north of West Ditch outfall, looking WNW. Flag for sample SW/SD-45 in left foreground. Panorama with photos 53, 55 and 56.

PHOTOGRAPH: 55 PHOTOGRAPHER: Mike Carlson

DATE/TIME: December 14, 2006 0910-0920

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Wet meadow north of West Ditch outfall, looking WSW. Flag for sample SW/SD-45 in rightt foreground. Panorama with photos 53, 54 and 56.

PHOTOGRAPH: 56 PHOTOGRAPHER: Jeff Stofferahn

DATE/TIME: December 14, 2006 0910 - 0920

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Wet meadow north of West Ditch outfall, looking SSW. Panorama with photos 53, 54 and 55.

PHOTOGRAPH: 57 PHOTOGRAPHER: Mike Carlson

DATE/TIME: December 14, 2006 0910-0920

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Edge of open water in Cahokia wetalnds complex, downgradient from West Dicth Outfall. Duck blind in center of photo. Looking NNW

PHOTOGRAPH: 58 PHOTOGRAPHER: Jeff Stofferahn

DATE/TIME: December 14, 2006 0910-0920

PROJECT: Old American Zinc Plant Site, Fairmont City, Illinois - RI/FS

SUBJECT: Wet meadow, looking NW approx. halfway between West Dicth outfall and open water of Cahokia wetlands complex.

PHOTO	59	PHOTOGRAPHER: Jeff Stofferahn
DATE:	July 17, 2007	TIME: 1020
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS	
SUBJECT:	Location of sediment sample TWD-1-N, looking northeas	st.

PHOTO	60	PHOTOGRAPHER: Jeff Stofferahn
DATE:	July 17, 2007	TIME: 1020
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS	
SUBJECT:	Location of sediment sample TWD-1-N, looking northeas	t.

PHOTO	61	PHOTOGRAPHER: Jeff Stofferahn
DATE:	July 17, 2007	TIME: 1020
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS	
SUBJECT:	Location of sediment sample TWD-1-N, looking south-southwest.	

PHOTO	62	PHOTOGRAPHER: Jeff Stofferahn
DATE:	July 17, 2007	TIME: 1020
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS	
SUBJECT:	Location of sediment sample TWD-1-N, looking northwest	st

PHOTO	63	PHOTOGRAPHER: Jeff Stofferahn
DATE:	July 17, 2007	TIME: 1105
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS	
SUBJECT:	Location of sediment sample TWD-1-C, looking southeast	st.

PHOTO	64	PHOTOGRAPHER: Jeff Stofferahn
DATE:	July 17, 2007	TIME: 1105
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS	
SUBJECT:	Location of sediment sample TWD-1-C, looking southeast	st.

PHOTO	65	PHOTOGRAPHER: Jeff Stofferahn
DATE:	July 17, 2007	TIME: 1105
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS	
SUBJECT:	Location of sediment sample TWD-1-C, looking northwest	st.

PHOTO	66	PHOTOGRAPHER: Jeff Stofferahn
DATE:	July 17, 2007	TIME: 1105
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS	
SUBJECT:	Location of sediment sample TWD-1-C, looking northeast.	

РНОТО	67	PHOTOGRAPHER: Jeff Stofferahn
DATE:	July 17, 2007	TIME: 1105
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS	Print Transfer of the second s
SUBJECT:	Location of sediment sample TWD-1-C, looking northeas	st.

РНОТО	68	PHOTOGRAPHER: Jeff Stofferahn
DATE:	July 17, 2007	TIME: 1125
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS	
SUBJECT:	Location of sediment sample TWD-1-S, looking southeast	st.

РНОТО	69	PHOTOGRAPHER: Jeff Stofferahn
DATE:	July 17, 2007	TIME: 1125
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS	
SUBJECT:	Location of sediment sample TWD-1-S, looking northwes	st.

РНОТО	70	PHOTOGRAPHER: Rhonda Regester
DATE:	July 17, 2007	TIME: 1455
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS	
SUBJECT:	Collecting sediment sample TWD-2-S, looking northwest	

PHOTO	71	PHOTOGRAPHER: Rhonda Regester
DATE:	July 17, 2007	TIME: 1455
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS	
SUBJECT:	Sediment sample TWD-2-S. Note decoys on water.	

PHOTO	72	PHOTOGRAPHER: Jeff Stofferahn
DATE:	July 17, 2007	TIME: 1455
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS	
SUBJECT:	Location of sediment sample TWD-2-S., looking souther	ast. Note remnants of old duck blinds.

PHOTO	73	PHOTOGRAPHER: Rhonda Regester
DATE:	July 17, 2007	TIME: 1515
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS	
SUBJECT:	Location of sediment sample TWD-2-C, looking north-no	rthwest.

РНОТО	74	PHOTOGRAPHER: Jeff Stofferahn
DATE:	July 17, 2007	TIME: 1515
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS	
SUBJECT:	Location of sediment sample TWD-2-C, looking northwes	st.

РНОТО	75	PHOTOGRAPHER: Jeff Stofferahn
DATE:	July 17, 2007	TIME: 1535
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS	
SUBJECT:	Location of sediment sample TWD-2-N, looking east-so	utheast.

PHOTO	76	PHOTOGRAPHER: Jeff Stofferahn
DATE:	July 17, 2007	TIME: 1535
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS.	
SUBJECT:	Location of sediment sample TWD-2-N, looking northwest	st.

PHOTO	77	PHOTOGRAPHER: Jeff Stofferahn
DATE:	July 17, 2007	TIME: 1600
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS	
SUBJECT:	Location of sediment sample TWD-3-S, looking northeas	

PHOTO	78	PHOTOGRAPHER: Jeff Stofferahn	
DATE:	July 17, 2007	TIME: 1600	
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS		
SUBJECT:	Location of sediment sample TWD-3-S, looking southwe	est.	

РНОТО	79	PHOTOGRAPHER: Jeff Stofferahn
DATE:	July 17, 2007	TIME: 1600
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS.	
SUBJECT:	Wooded area to southeast of sediment sample TWD-3-S	•

PHOTO	80	PHOTOGRAPHER: Jeff Stofferahn
DATE:	July 17, 2007	TIME: 1635
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS.	
SUBJECT:	Location of sediment sample TWD-3-N, looking northwes	st.

PHOTO	81	PHOTOGRAPHER: Rhonda Regester
DATE:	July 17, 2007	TIME: 1635
SITE:	Former American Zinc Site, Fairmont City, Illinois-RI/FS	
SUBJECT:	Location of sediment sample TWD-3-N, looking southeast	st.

ATTACHMENT B BIOASSAY LABORATORY RESULTS

August 4, 2006

Pat Thomson ENTACT 1010 Executive Center St, #280 Westmont, IL 60559

Dear Ms. Thomson:

Please find attached a copy of the invoice for this work and a report. Please review and if you have any questions, you may either E-mail (pgmeier@umich.edu) or call me at (734) 717-3013. Thank you kindly.

Sincerely yours, Peter a Meier

Peter G. Meier, PhD.

Whole Aquatic Sediments Evaluation Employing the Dipteran, Chironomus tentans

July 6 - 17, 2006

Prepared for:

ENTACT & Associates LLC 1010 Executive Court, Suite 280 Westmont, IL 60559

Ву

Peter G. Meier, Ph.D. Tui B. Minderhout, Ph.D.

Aquatic Toxicology and Microbiology Laboratory
331 Metty Drive, Suite #1
Ann Arbor, MI 48103

1. INTRODUCTION

This report contains whole-sediment toxicity evaluations performed on sediment during July, 2006. The purpose of the tests was to determine the potential acute toxicity of sediment contaminants on the dipteran, *Chironomus tentans*. This report outlines procedures specific for sediment toxicity testing and data evaluation. This work was carried out at the Aquatic Toxicology and Microbiology Laboratory in Ann Arbor, Michigan.

2. PROCEDURES AND METHODS

The evaluation of the toxicity of eight sediments was conducted using the ten day survival test for the dipteran, *C. tentans*. The procedures followed are contained in EPA/600/R-99/064, *Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Freshwater Invertebrates*. A summary of a recommended test conditions for the midge is found in Table 1.

2.1 Laboratory Water Supply

A moderately hard water for *C. tentans* cultures and maintenance is employed in our facility. Preparation of the reconstituted moderately hard laboratory water is outlined in EPA/821/R-02-013. This water is made up in a volume of 200 L on which water quality parameters are run to check for consistencies between batches. This moderately hard water was utilized as the culture water as well as for the overlying water renewal.

2.2 Test Organisms

The test organisms, *C. tentans*, were obtained from Aquatic Biosystem, Inc. in Fort Collins, Colorado. A sufficient number of midges were shipped to the laboratory on June 29, 2006 and upon arrival were immediately transferred to a 10 L aerated aquarium until their use. They were fed a homogenized Tetrafin goldfish mixture until test exposure initiation on July 7, 2006.

2.3 Sediment Collection and Source

Seven of the eight sediments were collected by ENTACT/STL personnel from the vicinity of Fairmont City, Illinois from June 28, 2006 to June 30, 2006. The samples were shipped in coolers with ice to the laboratory and stored at 4°C in the refrigerator. A control sediment was prepared from shredded brown paper toweling that was soaked for 24 hours in acetone. It was rinsed five times with deionized water. After that step, the shredded paper was placed in a 10 L

aquarium and aerated for four days. Part of the shredded substrate was employed as the control sediment, whereas the remainder was frozen for future use.

2.4 Experimental Design

The aim of these tests was to evaluate the potential acute toxicity of the seven sediments and one laboratory control. With this objective in mind, standard testing procedures, as summarized in Table 1, were employed. Eight replicates per sediment were set up for *C. tentans* exposures and the shredded paper toweling that was used in maintaining laboratory culture, was employed as a control sediment. Moderately hard laboratory water was utilized for the overlying water.

One day prior to the start of the test (day -1) the sediment from each site was mixed thoroughly and the 100 mL aliquots were transferred to each of the eight test chambers. During this process, large debris that consisted mostly of partially decaying plant material and visible fauna were removed. Visual observations of the sediments that were made at that time are noted in Table 2. Moderately hard laboratory water was also added at this time. On day 0, the overlying water was renewed before the test organisms were introduced into each of the glass beakers. Measurement of water quality parameters was also initiated on this day. Ten second- and early third-instar C. tentans larvae (10-12) days old) were randomly added to respective test chambers. At this time the organisms were fed, 1.5 mL homogenized Tetrafin® goldfish food. The glass beakers were placed in a rack and transferred to a temperature controlled incubator (23 ± 1°C.) The light cycle was 16 hours on and 8 hours off. Twice daily, temperature, conductivity, pH and dissolved oxygen were measured in the composite water sample derived from the eight replicates for each sediment treatment. After that process, the overlying water was renewed in all the beakers (Appendix A: Table A-1). Feeding occurred only after the morning renewal. This procedure was repeated daily through day 10, at which point the tests were terminated. On day 0, the overlying water from the beakers was composited from each sediment sample and 250 mL were retained for alkalinity, hardness and 500 mL for ammonia analysis. On the last day, the same procedure was followed. On day 10, the sediments were sieved through a #40 (425 μm) U.S. Standard mesh sieve and the surviving test organisms were removed and counted (Table A-2).

TABLE 1 RECOMMENDED TEST CONDITIONS FOR A TEN DAY SEDIMENT TOXICITY TEST WITH CHIRONOMUS TENTANS

1.	Test Type:	Whole-sediment toxicity test with renewal of overlying water
2.	Temperature (°C):	23 <u>+</u> 1°C
3.	Light quality:	Wide-spectrum fluorescence lights
4.	Illuminance:	About 100 to1,000 lux
5.	Photoperiod:	16 h light, 8 h darkness (recommended)
6.	Test chamber size:	300 mL high form lipless beaker
7.	Sediment volume:	100 g
8.	Overlying water volume	175 mL
9.	Renewal of overlying	
	water:	2 volume additions per day; continuous or intermittent (e.g. one volume addition every 12 hours)
10.	Age of test organisms:	Second- to third-instar (about 10-d-old larvae). All organisms must be second- or third-instar with at least 50% of the organisms at third-instar.
11.	No. of organisms per test	
	chamber:	10
12.	No. replicate chambers per	
	treatment:	Depends on the objective of the test. Eight replicates are recommended for routine testing.
13.	Feeding regime:	Tetrafin [®] goldfish food, fed 1.5 mL daily to each test chamber (1.5 mL contains 4.0 mg of dry solids)
14.	Aeration:	None, unless dissolved oxygen in overlying water drops below 40% of saturation
15.	, ,	Culture water, well water, surface water, site water or reconstituted water
16.	Overlying water quality:	Hardness, alkalinity and ammonia measured at the beginning and end of a test. Temperature, pH, conductivity, and dissolved oxygen measured twice daily.
17.	Test duration:	10 days
18.	Endpoints	Survival, with greater than 70% in the control and with minimum mean ash free dry weight of 0.48 mg/ surviving control organism.

Test Method 100.2 EPA Publication 600/R-99/064 (March, 2000).

TABLE 2 PHYSICAL APPEARANCES OF SEDIMENTS COLLECTED DURING JUNE 28-30, 2006 PROXIMAL TO FAIRMONT CITY, ILLINOIS

SEDIMENT IDENTIFICATION	DESCRIPTION
Laboratory Control	Shredded brown paper toweling.
SD-CT-01 (Field Control)	Dark clayey loam with decaying vegetation, no odor, no oily sheen, oligochaetes and three midges were removed.
SD-CT-05	Dark brownish clay with decaying vegetation, no odor or oily sheen, rust-iron layer, no macroinvertebrates were observed.
SD-CT-06	Dark clayey loam with decaying vegetation, no odor or oily sheen, oligochaetes and two midges were removed.
SD-CT-08	Black clayey silt with decaying vegetation, no odor or oily sheen, some oligochaetes were removed.
SD-CT-13	Grayish clay silt, less vegetation, no odor or oily sheen, no macroinvertebrates were found.
SD-CT-34	Black clay with duck weed (<i>Lemna sp.</i>) and other vegetation, no odor or oily sheen, some oligochaetes were found.
SD-CT-36	Black clay with big pieces of twigs and some decaying vascular plant material, no odor or oily sheen, a few oligochaetes were removed.

Other indigenous species in the sediment, mostly aquatic worms, were also removed but not included in the survival count. The biological endpoint for these sediment tests was mortality. The validity of the test was based on greater than 70% survival in the control treatment for *C. tentans* and a mean ash free dry weight greater than 0.48 mg per surviving individual. In addition, it was recommended that the hardness, alkalinity, pH and ammonia in the overlying water within the treatments should not have varied by more than 50% over the test duration.

2.5 Statistical Analysis

Survival data for the tests were analyzed first for normality and homogeneity of the variance employing Shapiro-Wilk's and Bartlett's Tests, if necessary the data were transformed prior to the analysis. The Tox Stat® version 3.5 Program (University of Wyoming and West, Inc., WY) was employed for the statistical analysis. However, no statistical procedure was performed in this evaluation since an inadequate number of midges survived in all the sediments with the exception of the laboratory negative control (Table A-2).

2.6 Quality Assurance

The purpose of this experiment is important for two reasons. First of all, a reference test will monitor over time the relative sensitivity of the laboratory organisms. Results of the respective EC₅₀ value for an acute test will provide information on physiological changes that affect tolerances. Secondly, the reference test is part of the QA/QC program that provides a tool to evaluate the ability of the laboratory to generate reproducible results (Appendix B).

3.0 RESULTS AND DISCUSSION

The toxicity evaluation of a control and seven grab aquatic sediment samples was initiated on July 7, 2006 and completed on July 17, 2006. The samples were collected from the vicinity of Fairmont City, IL by ENTACT/STL personnel.

3.1 Physical-Chemical Aspects

Temperature, conductivity, pH and dissolved oxygen were measured in the overlying water twice daily (Table A-1). The temperature stayed fairly constant and remained within the $23 \pm 1^{\circ}$ C guidelines. This was expected since the exposure vessels were kept in the temperature and light controlled incubator. For conductivity, the observed and recorded values varied somewhat between

the 10 days exposure period and between sediment samples. But, a decreasing trend was noticed between the initial and final measurement for each of the overlying water taken from the respective sediment samples. A very similar pattern was observed with pH between days and sediment samples. However, an overall trend for decreasing pH values for all sediments was not the case. In some overlying water of the sediments, the pH decreased over the exposure period (laboratory control, SD-CT-06 and SD-CT-13); while the overlying waters from sediment SD-CT-01, SD-CT-05, SD-CT-08 and SD-CT-34 showed a slight increase in pH. For sediment SD-CT-36, no change between initial and final pH measurement was seen. The dissolved oxygen concentration also varied somewhat but stayed above the 40% saturation level as recommended. A slight increasing trend with time was noticed in all the overlying waters measured. Sediment SD-CT-34 had usually the lowest dissolved oxygen concentration.

The pH value, conductivity, alkalinity, hardness and ammonia levels for the initial and final measurements are summarized for each of the sediment in Table A-2 in the Appendix. Also the survivals of midges are included. As mentioned in the previous paragraph, all of these parameter values varied and either increased or decreased or stayed the same. Probably the most variability between start up and final concentrations was recorded for ammonia. This compound decreased in all the overlying water samples for the respective sediments over time, with the exception of SD-CT-13 where the concentration increased by a factor of three from 0.14 to 0.42 mg/L as NH₃-N. The remaining waters analyzed from the various sediments showed significant reductions in the ammonia with time. Over a four fold decrease (426%) was recorded over time in SD-CT-06 (2.30 mg/L to 0.54 mg/L) and SD-CT-34 had decreased 386% (5.8 mg/L to 1.5 mg/L.) The laboratory negative control showed a 257% decrease (0.72 mg/L to 0.28 mg/L) over the 10 days and SD-CT-36 decreased its ammonia concentration by 270%. The ammonia levels in the remaining sediments were reduced by less than 100%. The loss in the ammonia over time is somewhat puzzling, since the majority of the midges had died in the early part of the test. Oligochaetes were still found in most of the sediments and they may have played a part in this venting of ammonia. Another contribution to this loss may have been attributed to the water renewal process, although this was done very carefully to reduce the turbulence and potential mixing. The role of the aquatic flora, namely bacteria, may have been the significant factor in the conversion of ammonia to nitrate and nitrite and hence was not accounted for in the analysis.

APPENDIX A

Supportive Physical, Chemical and Biological Data

Table A-1 Daily Measured Physical and Chemical Data From Overlying Water for Designated Sediments for Day 0

Sediment ID	Date	Time	Temperature (°C)	Conductivity (µmhos/cm)	pH (S.U.)	D.O. (mg/L)
Lab Control	7/7/2006	1245	22.4	390	7.1	5.9
	.		22.5	390	7.1	5.8
SD-CT-01			22,0	330		0.0_
SD-CT-05	-		22.6	380	7.1	5.9
			20.6	420		5.4
SD-CT-06			22.6	420	7.3	5.4
SD-CT-08			22.4	400	7.2	4.8
SD-CT-13			22.5	390	7.7	5.4
			22.4	490	7.1	4.0
SD-CT-34						
SD-CT-36	:		22.5	430	7.3	4.1
Moderately			22.6	360	7.9	8.4
Hard Water*			22.1	370	7.9	8.4

Table A-1 Daily Measured Physical and Chemical Data From Overlying Water for Designated Sediments for Day 1

Sediment ID	Date	Time	Temperature (°C)	Conductivity (µmhos/cm)	pH (S.U.)	D.O. (mg/L)
Lab Control	7/8/2006	0910	22.5	390	7.7	5.5
Lab Control		1920	23.0	380	7.6	5.3
SD-CT-01			22.5	380	7.1	5.2
30-01-01			22.5	380	7.1	4.9
SD-CT-05			22.6	370	7.1	4.9
30-01-03			22.6	370	7.2	5.0
SD-CT-06			22.6	410	7.3	4.1
30-01-00			22.9	400	7.3	3.9
SD-CT-08			22.4	390	7.2	4.4
30-01-00			22.8	370	7.3	4.2
SD-CT-13		,	22.6	390	7.8	5.7
30-01-13			22.9	380	7.9	5.4
SD-CT-34			22.6	490	7.1	3.9
. 30-01-34			22.8	470	7.2	4.1
SD-CT-36			22.5	420	7.3	3.9
SD-C1-30			22.7	400	7.2	4.0
Moderately			22.1	360	7.9	8.4
Hard Water			22.7	360	8.0	8.3

^{*} Moderately Hard Water - Water employed in replacing the overlying water.

Table A-1 Daily Measured Physical and Chemical Data From Overlying Water for Designated Sediments for Day 2

Sediment ID	Date	Time	Temperature (°C)	Conductivity (µmhos/cm)	pH (S.U.)	D.O. (mg/L)
Lab Cantral	7/9/2006	1030	22.7	420	7.3	4.4
Lab Control	;	1930	22.8	400	7.2	4.6
SD-CT-01	İ		22.7	390	7.0	3.9
30-01-01			22.8	370	7.1	4.4
SD-CT-05	}		22.7	380	7.0	4.7
3D-C1-03			22.9	370	7.1	4.6
SD-CT-06			22.7	420	7.1	4.7
30-01-00			23.0	380	7.3	4.5
SD-CT-08			22.6	410	7.1	4.4
30-01-00			23.0	390	7.2	4.6
SD-CT-13			22.6	420	7.4	4.7
30-01-13			23.1	380	7.7	4.2
SD-CT-34			22.6	520	7.1	4.3
30-01-34	,		23.1	470	7.2	3.9
SD-CT-36			22.7	450	7.2	4.0
3D-C1-30			23.1	400	7.1	3.9
Moderately			22.7	360	7.0	8.4
Hard Water*			23.2	360	7.9	8.5

Table A-1 Daily Measured Physical and Chemical Data From Overlying Water for Designated Sediments for Day 3

Sediment ID	Date	Time	Temperature (°C)	Conductivity (µmhos/cm)	рН (S.U.)	D.O. (mg/L)
Lab Control	7/10/2006	1000	22.4	420	7.0	3.9
Lab Control		2000	23.0	400	7.0	4.0
SD-CT-01			22.5	370	7.1	4.6
30-01-01			22.9	370	7.1	4.8
SD-CT-05			22.5	370	7.1	3.9
30-01-03			22.9	370	7.1	3.8
SD-CT-06			22.5	390	7.3	4.8
30-01-00			22.8	380	7.3	4.7
SD-CT-08	1		22.5	390	7.2	4.0
30-01-00			22.8	380	7.2	4.1
SD-CT-13			22.5	390	7.7	4.3
30-01-13	i		22.8	380	7.6	4.3
SD-CT-34			22.4	410	7.2	3.9
30-01-34	l		22.9	400	7.2	3.8
SD-CT-36	1		22.5	400	7.2	3.8
30-01-30			22.9	390	7.2	3.7
Moderately			22.7	370	7.9	8.3
Hard Water			23.1	370	8.0	8.3

^{*} Moderately Hard Water - Water employed in replacing the overlying water.

Table A-1 Daily Measured Physical and Chemical Data From Overlying Water for Designated Sediments for Day 4

Sediment ID	Date	Time	Temperature (°C)	Conductivity (µmhos/cm)	pH (S.U.)	D.O. (mg/L)
Lab Control	7/11/2006	0930	22.6	410	6.9	4.1
Lab Control		2100	23.1	400	7.0	3.9
SD-CT-01			22.6	380	7.2	4.2
30-01-01			23.0	380	7.2	4.0
SD-CT-05			22.6	370	7.2	4.0
30-01-03	!		23.2	360	7.2	4.1
SD-CT-06			22.6	380	7.4	4.3
3D-C1-00			23.0	390	7.3	3.9
SD-CT-08			22.7	380	7.3	3.8
30-01-06			23.1	390	7.3	4.0
SD-CT-13			22.7	380	7.7	4.2
30-01-13			23.2	390	7.6	4.0
SD-CT-34	:		22.7	390	7.3	4.1
30-01-34			23.4	380	7.2	4.3
SD-CT-36			22.8	400	7.3	3.8
30-01-36			23.0	410	7.3	3.9
Moderately			22.6	370	8.3	7.9
Hard Water*			22.8	380	8.2	7.9

Table A-1 Daily Measured Physical and Chemical Data From Overlying Water for Designated Sediments for Day 5

Sediment ID	Date	Time	Temperature (°C)	Conductivity (µmhos/cm)	pH (S.U.)	D.O. (mg/L)
Lab Control	7/12/2006	0945	22.6	420	6.9	4.1
Lab Control		1925	23.1	390	6.9	4.2
SD-CT-01			22.4	380	7.1	4.0
3D-C1-01			23.0_	370	7.0	3.9
SD-CT-05			22.4	370	7.1	4.4
3D-C1-03			23.1	370	7.0	4.2
SD-CT-06			22.5	390	7.3	4.1
3D-C1-00			23.2	380	7.2	4.0
SD-CT-08 -			22.6	390	7.3	4.3
3D-C1-00			23.2	370	7.2	4.0
SD-CT-13	:		22.6	390	7.5	3.9
		i	23.2	390	7.4	3.9
SD-CT-34			22.7	390	7.3	4.0
\			23.3	380	7.2	3.8
SD-CT-36			22.7	400	7.2	3.7
30-01-30			23.2	400	7.2	3.6
Moderately			23.0	370	7.9	8.4
Hard Water			23.2	370	7.9	8.5

^{*} Moderately Hard Water - Water employed in replacing the overlying water.

Table A-1 Daily Measured Physical and Chemical Data From Overlying Water for Designated Sediments for Day 6

Sediment ID	Date	Time	Temperature (°C)	Conductivity (µmhos/cm)	pH (S.U.)	D.O. (mg/L)
Lab Control	7/13/2006	0935	22.8	380	6.7	3.8
Lab Control		2100	22.6	390	6.6	3.9
SD-CT-01			22.7	370	7.1	3.7
30-01-01			22.6	360	7.2	3.8
SD-CT-05			22.7	360	7.1	4.1
30-01-03			22.8	360	7.1	4.0
SD-CT-06			22.7	380	7.3	4.1
30-01-00			22.7	370	7.3	3.9
SD-CT-08			22.7	370	7.2	4.5
30-01-06			22.8	370	7.3	4.0
SD-CT-13			22.8	380	7.6	4.1
30-01-13			22.9	380	7.6	3.9
SD-CT-34			22.8	370	7.3	3.8
: 30-01-3 4			22.9	370	7.3	3.9
SD-CT-36			22.8	380	7.3	3.7
SD-C1-30			22.9	380	7.3	3.7
Moderately			22.2	370	7.9_	8.2
Hard Water*			23.0	370	7.9	8.4

Table A-1 Daily Measured Physical and Chemical Data From Overlying Water for Designated Sediments for Day 7

Sediment ID	Date	Time	Temperature (°C)	Conductivity (µmhos/cm)	pH (S.U.)	D.O. (mg/L)
Lab Control	7/14/2006	0955	22.5	400	6.7	4.4
Lab Control		2015	22.6	380	6.6	4.1
SD-CT-01			23.1	370	7.2	4.7
30-01-01			23.2	360	7.2	3.8
SD-CT-05			23.0	360	7.2	4.3
30-01-05			23.1	370	7.2	4.2
SD-CT-06			23.0	370	7.2	5.4
30-01-00			23.4	370	7.3	3.9
SD-CT-08	1		23.2	370	7.3	5.2
30-07-00	!		22.9	370	7.3	4.0
SD-CT-13			23.1	380	7.6	4.4
30-01-13	i		22.8	390	7.7	3.8
SD-CT-34	i		23.2	360	7.3	3.9
30-01-34		;	22.9_	360	7.3	4.0
SD-CT-36			23.3	380	7.2	3.8
30-01-30			22.8	380	7.3	3.7
Moderately			22.3	380	7.9	8.3
Hard Water	Ì		22.4	380	8.0	8.4

^{*} Moderately Hard Water - Water employed in replacing the overlying water.

Table A-1 Daily Measured Physical and Chemical Data From Overlying Water for Designated Sediments for Day 8

Sediment ID	Date	Time	Temperature (°C)	Conductivity (µmhos/cm)	pH (S.U.)	D.O. (mg/L)
Lab Control	7/15/2006	1045	22.4	370	6.8	4.4
Lab Control		2015	23.1	360	6.7	4.1
SD CT 01			22.4	360	7.2	4.7
SD-CT-01			23.0	360	7.2	4.8
SD-CT-05			22.4	350	7.3	3.8
30-01-03			23.1	350	7.2	4.3
SD-CT-06			22.5	360	7.4	5.4
3D-C1-00			23.1	360	7.3	3.9
SD-CT-08			22.5	360	7.3	5.2
30-01-06			23.1	360	7.3	4.0
SD-CT-13			22.6	380	7.6	4.4
30-01-13			23.1	380	7.6	3.7
SD-CT-34			22.6	360	7.3	3.9
30-01-34			23.2	360	7.3	3.9
SD-CT-36			22.5	370	7.3	3.8
SD-C1-36			23.1	370	7.3	3.7
Moderately			22.4	380	8.0	8.4
Hard Water*			22.7	380	8.0	8.3

Table A-1 Daily Measured Physical and Chemical Data From Overlying Water for Designated Sediments for Day 9

Sediment ID	Date	Time	Temperature (°C)	Conductivity (µmhos/cm)	pH (S.U.)	D.O. (mg/L)
Lab Control	7/16/2006	1030	22.6	370	6.8	3.7
Lab Control		2100	23.0	370	6.7	3.8
SD-CT-01			22.5	370	7.2	5.0
30-01-01			23.0	370	7.2	5.0
SD-CT-05			22.6	360	7.3	5.6
30-01-03			23.0	360	7.3	5.1
SD-CT-06			22.6	370	7.4	5.3
30-01-00			23.1	360	7.3	4.8
SD-CT-08			22.7	370	7.4	5.8
3D-C1-00			23.1	370	7.4	4.6
SD-CT-13			22.7	390	7.7	5.2
3D-C1-13			22.9	400	7.8	4.4
SD-CT-34			22.7	370	7.4	4.9
3D-C1-34			22.9	380	7.4	4.9
SD-CT-36			22.8	380	7.4	4.4
3D-C1-30 .			22.9	380	7.4	3.8
Moderately			22.6	380	7.9	8.1
Hard Water			22.9	380	8.0	8.3

^{*} Moderately Hard Water - Water employed in replacing the overlying water.

Table A-1 Daily Measured Physical and Chemical Data From Overlying Water for Designated Sediments for Day 10

Sediment ID	Date	Time	Temperature (°C)	Conductivity (µmhos/cm)	pH (S.U.)	D.O. (mg/L)
Lab Control	7/17/2006	1130	22.9	360	6.7	3.8
SD-CT-01			22.9	360	7.2	3.9
SD-CT-05			22.9	370	7.2	3.9
SD-CT-06			22.9	370	7.2	4.2
SD-CT-08			23.1	360	7.3	3.9
SD-CT-13			23.1	380	7.6	3.7
SD-CT-34			23.2	360	7.3	3.7
SD-CT-36			23.2	380	7.3	3.8
Moderately Hard Water*						

^{*} Moderately Hard Water - Water employed in replacing the overlying water.

Table A-2 Physical, Chemical and Biological Data Comparisons Between Day 0 and Day 10 for Overlying Water from Designated Sediment Samples

Sample ID	Day	pH (S.U.)	Conductivity (µmos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Ammonia (mg/L NH3)	Survival Number
Lab Control	0	7.1	390	78	96	0.72	80
	10	6.7	360	70	108	0.28	70
SD-CT-01	0	7.1	390	68	92	1.20	80
FieldControl	10	7.2	380	68	96	0.78	0
SD-CT-05	0	7.1	380	66	96	1.00	80
	10	7.2	370	68	96	0.68	0
SD-CT-06	0	7.3	420	70	100	2.30	80
	10	7.2	370	74	92	0.54	1
SD-CT-08	0	7.2	400	84	112	1.80	80
	10	7.3	360	80	104	0.90	0
SD-CT-13	0	7.7	390	78	108	0.14	80
	10	7.6	380	88	108	0.42	1
SD-CT-34	0	7.1	490	90	112	5.80	80
	10	7.3	360	98	108	1.50	0
SD-CT-36	0	7.3	430	84	108	2.60	80
	10	7.3	380	82	108	0.96	0

Table A-3 A Summary of Midge Survival, Dry Weight (dried at 105C) and Ash Free Dry Weight (dried at 550 C) in Designated Sediments

Sediment ID: Laboratory Control

Replicate	Survival Number	Initial Wt. (mg)	Final Dry Wt. (mg)	Ash Free Wt. (mg)	Ash Free Wt./Indiv. (mg)
Α	8	98.00	92.50	4.50	0.56
В	8	97.00	89.00	7.50	0.94
С	, 8	81.00	75.00	3.00	0.38
D	10	97.00	90.00	7.00	0.70
Е	10	131.00	120.00	10.00	1.00
F	8	103.00	94.00	8.00	1.00
G	9	94.00	86.00	6.50	0.72
Н	9	104.00	96.50	7.50	0.83
			Mean Ash Free	Wt./Indiv. (mg)	0.77
				Std. Dev.	0.22
				95% C.I.	0.15

Sediment ID: SD-CT-01 (Site Negative Control)

Replicate	Survival Number	Initial Wt. (mg)	Final Dry Wt. (mg)	Ash Free Wt. (mg)	Ash Free Wt./Indiv. (mg)
Α	0	-	-	-	-
В	0	-	_	-	-
С	0	-	•	-	-
D	0	-	-	-	-
E	0	•	•	-	-
F	0	-	-	-	-
G	0	-	-	•	-
Н	0	_	_	-	
			Mean Ash Free	Wt./Indiv. (mg)	-
				Std. Dev.	-
				95% C.I	

Sediment ID: SD-CT-05

Replicate	Survival Number	Initial Wt. (mg)	Final Dry Wt. (mg)	Ash Free Wt. (mg)	Ash Free Wt./Indiv. (mg)
Α	0	-	•	-	-
В	0	-	•		-
С	0	-	•		•
D	0	-		-	-
E	0	i •	-	-	-
F	0	-		-	•
G	0	-	-	-	. •
Н	0	-		-	-
	····		Mean Ash Free	Wt./Indiv. (mg)	-
				Std. Dev.	-
			1		

95% C.I.

Table A-3 A Summary of Midge Survival, Dry Weight (dried at 105C) and Ash Free Dry Weight (dried at 550 C) in Designated Sediments

Sediment ID: SD-CT-06

Replicate	Survival Number	Initial Wt. (mg)	Final Dry Wt. (mg)	Ash Free Wt. (mg)	Ash Free Wt./Indiv. (mg)
A	0	-	-	-	-
В	0	-	-	-	_
С	0	-	_	-	-
D	0	•	-	-	-
E	0	-		-	•
F	1	-	-	-	-
G	0	•	•	•	•
Н	0	-	-	-	-
			Mean Ash Free	Wt./Indiv. (mg)	_

Std. Dev. 95% C.I. -

Sediment ID: SD-CT-08

Replicate	Survival Number	Initial Wt. (mg)	Final Dry Wt. (mg)	Ash Free Wt. (mg)	Ash Free Wt./Indiv. (mg)
Α	0	-	-	-	-
В	0	-	-	•	-
С	0	•	-	_	-
D	0	•	•	-	-
E	0	•	•	-	_
F	0	-	-	-	-
G	0			•	-
Н	0	-	•	-	-
			Mean Ash Free	Wt./Indiv. (mg)	-
				Std. Dev.	-
				95% C.I.	•

Sediment ID: SD-CT-13

Replicate	Survival Number	Initial Wt. (mg)	Final Dry Wt. (mg)	Ash Free Wt. (mg)	Ash Free Wt./Indiv. (mg)
A	0		-	•	-
В	0	· · · · · · · · · · · · · · · · · · ·	<u>-</u>	-	-
С	0	-	•	-	-
D	0	•	•	•	
E	O	-	•		-
F	0	-	•		-
G	1	•	•	-	_
Н	0	•	•	•	-
			Mean Ash Free	Wt./Indiv. (mg)	-
				Ctd Day	T

Std. Dev. -95% C.I. -

Table A-3 A Summary of Midge Survival, Dry Weight (dried at 105C) and Ash Free Dry Weight (dried at 550C) in Designated Sediments

Sediment ID: SD-CT-34

Replicate	Survival Number	Initial Wt. (mg)	Final Dry Wt. (mg)	Ash Free Wt. (mg)	Ash Free Wt./Indiv. (mg)
Α	0	-	-	_	-
В	0	-	-	-	-
С	0	-	-	-	-
D	0	-	-	-	-
E	0	-	-	-	-
F	0	-	-	-	-
G	0	-	-	-	-
Н	0	<u> </u>	-	-	-
				1.1.4.4	

 Mean Ash Free Wt./Indiv. (mg)

 Std. Dev.

 95% C.I.

Sediment ID: SD-CT-36

Replicate	Survival Number	Initial Wt. (mg)	Final Dry Wt. (mg)	Ash Free Wt. (mg)	Ash Free Wt./Indiv. (mg)		
Α	0	-	-	_	-		
В	0	-	-	-	-		
С	0	-	-	-	-		
D	0	-	-	-	-		
Е	0	-	-	-	-		
F	0	•	-	•	-		
G	0	-	-	-	-		
Н	0	7	-	-	-		
			Mean Ash Free	-			
				Std. Dev.	-		
				95% C.I.	<u>-</u>		

Table A-4. A Summary of Exposed Midge Survival in Designated Sediments from 7/7/2006 through 7/17/2006

Sample	Number of	Replicate						Survival					
ID	Organisms	Α	В	С	D	Е	F	G	Н	Mean	Std Dev	Surv.%	95% C.I.
Reference	Initial												
N/A	Final												
Lab Control	Initial	10	10	10	10	10	10	10	10	10	L		
	Final	8	8	8	10	10	8	9	9	8.75	0.89	87.5	0.62
SD-CT-01	Initial	10	10	10	10	10	10	10	10	10			
(Site Control)	Final	0	0	0	0	0	0	0	0	0		0	<u> </u>
SD-CT-05	Initial	10	10	10	10	10	10	10	10	10			
	Final	0	0	0_	0	0	0	0	0	0		0	
SD-CT-06	Initial	10	10	10	10	10	10	10	10	10			
	Final	0	0	0	0	0	1	0	0	0.01	0.35	0.1	0.24
SD-CT-08	Initial	10	10	10	10	10	10	10	10	10			
	Final	0_	0	0	0	0	0	0_	0	0		0	
SD-CT-13	Initial	10	10	10	10	10	10	10	10	10			
	Final	0	0	0	0	0	0	1	0	0.01	0.35	0.1	0.24
SD-CT-34	Initial	10	10	10	10	10	10	10	10	10			
	Final	0	0	0	0	0	0	0	0	0		0	
SD-CT-36	Initial	10	10	10	10	10	10	10	10	10			
	Final	0	0	0	0	0	0	0	0	0		0	

APPENDIX B Summary Reference Acute Toxicity Data With Chironomus tentans

1. INTRODUCTION

This report contains the reference toxicity method and data interpretation for the 96 hour acute test for *Chironomus tentans* when exposed to various concentrations of sodium chloride (NaCl).

2.0 PROCEDURE AND METHODS

One 96 hour acute static renewal survival test was performed with *Chironomus tentans*. Methods as outlined in EPA/600/R-99/064 were followed (Table 1). The *C. tentans* test was carried out from July 7, 2006 to July 11, 2006.

2.1 Laboratory Water Supply

A moderately hard water was utilized in our facility for the *C. tentans* culture. Preparation of the reconstituted laboratory water is outlined in EPA/821-R-02-013. The water is made up in volume of 200 L on which water quality parameters are run to check for consistencies between batches. Moderately hard water was used to make up the various concentrations of sodium chloride solution for exposure of *C. tentans*.

2.2 Test Organisms

Chironomus tentans used in this reference experiment was from the same cohort as those organisms employed in the sediment toxicity tests. The midges were late second- early third-instar larvae.

2.3 Experimental Design

The purpose of this test was to evaluate the "relative sensitivity" of the organisms to our reference toxicant, sodium chloride. *C. tentans* were exposed to five concentrations of NaCl solution and one control. Four replicates, with 10 organisms in each, were set up for each concentration and for the control. The organisms were fed with 1.25 ml of Tetrafin® goldfish food (4.0 g solid/L suspension) on day 0 and after renewal on day 2. Routine water quality parameters were measured prior to the transfer of organisms to their respective exposure vessels and at the end of the test.

3.0 RESULTS AND DISCUSSION

Reference toxicity evaluation with *C. tentans* was initiated on July 7, 2006. The test satisfied the validity requirement of 90% survival in the control.

The routine physical-chemical parameters varied little over the test period and these are recorded on the data sheet.

The resulting 96 hour EC₅₀ values and 95% confidence intervals, calculated by using Probit Analysis (Tox Stat, v. 3.5, University of Wyoming and West, Inc.), was 8.20 g NaCl/L (7.88, 8.51 95% C.I.)

4.0 SUMMARY

A reference toxicity test with C. tentans was carried out with sodium chloride. The test proved valid since 90% or greater survival was achieved in the control after the four days period. The EC₅₀ value is comparable to those values obtained previously.

TABLE 1 RECOMMENDED TEST CONDITIONS REFERENCE-TOXICITY TESTS WITH MORE THAN ONE ORGANISM/CHAMBER

1.	Test Type:	Water-only test
2.	Dilution series:	Control and at least 5 test concentrations (0.5 dilution factor)
3.	Toxicant:	NaCl
4.	Temperature (°C):	23 <u>+</u> 1°C
5.	Light quality:	Wide-spectrum fluorescence lights
6.	Illuminance:	About 100 to1,000 lux
7.	Photoperiod:	16 h light, 8 h darkness
8.	Renewal of water:	None
9.	Age of organisms:	Second to third instar (about 10-d-old larvae). All organisms must be third or second instar with at least 50% of the organisms at third instar.
10.	Test chamber:	300 mL high form lipless beaker
11.	Volume of water:	200 mL
12.	No. of organisms/chamber:	10
13.	No. replicate chambers per	
	treatment:	4
14.	Feeding regime:	1.25 mL Tetrafin $^{\circ}$ goldfish food (4 g/L stock) on day 0 and day 2)
15.	Substrate:	None
16.	Aeration:	None, unless dissolved oxygen in overlying water drops below 40% of saturation
17.	Dilution water:	Culture water, well water, surface water, site water or reconstituted water
18.	Test chamber cleaning:	.None
19.	Water quality:	. Hardness, alkalinity, conductivity, dissolved oxygen and pH at the beginning and end of a test. Temperature daily.
20.	Test duration:	.96 h
21. 22.	Endpoints Test acceptability:	

Test Method 100.2 EPA Publication 600/R-99/064 (March, 2000).

The change in calcium carbonate concentrations measured in the alkalinity and hardness procedure were minimal for the testing period.

3.2 Biological Aspect

Prior to the transfer of Chironomus tentans midges into the eight sediments, indigenous organisms consisting mostly of aquatic worms (Oligochaeta) and midges (Family Chironomidae) were removed. Eight replicates, each containing 100 g of sediments and 175 mL of dilution water, received 10 midges each. Mortality of these organisms was observed within the first few days of the test. It was rather surprising that such a low number of midges survived. In fact a single Chironomus was picked from each of the two sediments, namely SD-CT-06 and SD-CT-13. The physical – chemical parameters measured were not that different from the laboratory negative control from which an 87.5% survival was recorded (Table A-4). The cause for this mortality had to be attributed to metals, namely lead, cadmium and zinc for which no data were provided. Based on these results, namely the lack of midge survival, negated the procedure for statistical analyses between sediments and the control. It was somewhat disappointing that the negative site control sediment (SD-CT-01) did not produce surviving midges. It should be noted however that viable oligochaetes were found even after 10 days in most sediments.

4.0 SUMMARY

The dipteran, *Chironomus tentans*, was utilized in evaluating the potential toxicity of seven aquatic sediments and one control for a 10 day period in July, 2006. The physical-chemical parameters measured twice daily in the respective overlying waters of the various sediments varied somewhat. These values, however, were not considerably different than those observed from the laboratory control. Midge survival in the control after 10 days was 87.5% (70 out of 80); whereas only a single organism was recovered from each of the two sediments. The remaining five sediments produced zero midges. Heavy metals, lead, cadmium and zinc, may have been the main cause for this acute toxicity. Due to the lack of surviving midges in the seven sediments, no statistical analysis was performed.

Table 2 Quality Assurance Acute Toxicity Data with Chironomus tentans. From July 7 to July 11, 2006

Parameter	Units											0 H	ır													
Concentration	g NaCl/L		 Control				6 0	 1	[7.		<u>"</u>		 8					 90	. · ·	7		1() 0	
Replicates	91100112	A	В	<u>c</u>	D	A	В	C	D	Α	В			A	В	C	D	A	В	<u> </u>		D	Α	В	С	To
Number of Individual		10	10	10	10	10	10	10	10	10	10	10 1		10	10	10	10	10	1			10	10	10	t	
Temperature	оС		22				22			1	2			L	2		4			22	4				22	
Dissolved Oxygen	mg/L		8			_	8 4				8.	4			8					8.3				-	3	
рН	SU		7 9	 9			7.7	7			7	7			7	7				77				7	7	
Conductivity	umhos/cm		36	0			109	00			125	520			135	20			1	485	0			16	250	
Alkalinity	mg/L CaCO3		66	<u> </u>																						
Hardness	mg/L CaCO3	l	10	0																						
· · · · · · · · · · · · · · · · · · ·		· · · ·								,		48 H	-1r*					-,					, — —			~ ·
Concentration	g NaCI/L	ļ;	Control	-MHW	! 1		6 ()	, -		7	.0	\perp		8	0	,	1		9.0		,		r <u>1</u>	00	
Replicates		A	В	C	D_	Α	В	<u>C</u>	D	Α	В	CI	D	Α	В	С	D	A	В	1	<u>c</u>	D	Α	В	C	D
Number of Individual		10	10	10	10	10	10	10	10	10	10	10 1	10	10	9	10	8	7	6		6	8	3	1_1_	2	3
Temperature	<u>oC</u>	<u> </u>	2:	2		-	22	2		ļ	2	2			2	2		ļ_		22			ļ		22	
Dissolved Oxygen (Initial)	mg/L		8	6			8 (6		1	8	.5			8	5				8.5				8	3 5	
Dissolved Oxygen																										,
(mg/L)	mg/L	 	4.			}	5			 		.4				3		-		4.9					50	
pH, Initial	SU	 	8.			}	7.1			}		8				.8		+		7.8					7.8	
pH, Final	SU	ļ	7				7			}		.1				1		┼		7.1					71	
Conductivity, Initial	umhos/cm	 	36			}	108					690	+			510		┼		473					380	
Conductivity, Final	umhos/cm mg/L CaCO3		37				109	10			12	490			13	570		1	1	489	0		L	16	310	
Alkalinity Hardness	mg/L CaCO3	<u> </u>	60																							
naturiess	IIIg/L Cacos	L —	10	<u>U</u>		j						96	ء لنا													
Concentration	g NaCl/L	Ţ	Contro			[6			1	7	'.0	7			0		7		90			Γ	1	00	
Replicates	9.10002	A	В	C	D	A	В	С	D	Α	В	7 7 7	D	A	В	Гc	D	A	В		c	D	A	В	To	D
Number of Individual	- ·	10	10	9	10	10	10	10	10	9	9	+	10	4	5	8	6	1	3	- +	2	2	0	1	0	
Temperature	оС		2		·	1	2:			T -		23				23	-l <u>-</u>	1		23			1	1	1 23	
Dissolved Oxygen	mg/L		5			1	5.			1		i.5	\dashv			3		1		5 1					5 2	
рН	SU		7				7.					'.1				1		1		7.1]		7 1	
Conductivity	umhos/cm		38	30			109				12	760				660			1	1476				16	3230	

TABLE 3 STATISTICAL ANALYSIS

PROBIT ANALYSIS - NOT USING SMOOTHED PROPORTIONS

DOSE	NUMBER SUBJECTS	NUMBER OBSERVED	OBSERVED PROPORTION	PREDICTED PROPORTION
0.00	40	39	0.9750	1.0000
6.00	40	40	1.0000	0.9251
7.00	40	38	0.9500	0.7836
8.00	40	23	0.5750	0.5509
9.00	40	8	0.2000	0.2987
10.00	40	1	0.0250	0.1181

Est. Mu = 3.1951 Est. Sigma = 1.5238 sd = 0.1668

Chi-Square lack of fit = 663948.4716 Likelihood lack of fit = 46.6652

Table Chi-square = 13.2767 (alpha = 0.01, df = 4) Table Chi-square = 9.4877 (alpha = 0.05, df = 4)

PROBIT EC ESTIMATES

POINT	UNADJUSTED EST. END POINT	95% CON	FIDENCE LIMITS
EC 1	4.6502	3.8580	5.4424
EC 5	5.6887	5.0941	6.2832
EC10	6.2423	5.7443	6.7402
EC20	6.9126	6.5152	7.3101
EC25	7.1673	6.8004	7.5342
EC30	7.3960	7.0514	7.7406
EC40	7.8091	7.4892	9.1289
EC50	8.1951	7.8771	8.5132
EC60	8.5812	8.2439	8.9184
EC70	8.9942	9.6169	9.3715
EC75	9.2229	8.8167	9.6291
EC80	9.4776	9.0350	9.9201
EC90	10.1480	9.5951	10.7008
EC95	10.7016	10.0477	11.3554
EC99	11.7400	10.8843	12.5958

ATTACHMENT C BENTHIC COMMUNITY STUDY

Memorandum

To: Jeff Stofferahn, ENTACT & Associates

From: Tom Girman, Jerry Kelly

CC:

Re: Former American Zinc Plant Benthic Community Monitoring

Natural Resources Consulting, Inc. (NRC) performed an investigation of the aquatic macroinvertebrate communities of waterways in the vicinity of the former American Zinc plant in Fairmont City, Illinois, on June 26-30, 2006. The purpose of the investigation was to provide data concerning the area aquatic macroinvertebrate communities in support of a baseline Ecological Risk Assessment being prepared for the site by ENTACT & Associates LLC (ENTACT). The investigation included collection of aquatic macroinvertebrates for analysis of community health and body burdens of specific heavy metals (arsenic, cadmium, lead, and zinc).

METHODS

NRC performed the investigation according to the Baseline Ecological Risk Assessment Work Plan (M.T. Bosco & Associates, 2006) and the Support Sampling Plan for the Old American Zinc Plant Site (ENTACT, 2006). Based on field conditions and discussions with ENTACT staff, NRC sampled nine locations in waterways within or near the site. A tenth location, East Ditch No. 2, became desiccated before a full sampling effort could be performed. Consequently, only a cursory qualitative taxonomic list could be developed for this waterway.

Several NRC scientists stationed on the banks or wading into the waterways collected aquatic macroinvertebrates with D-frame nets. All available habitats were sampled according to procedures described in Region IV U.S. Environmental Protection Agency guidance documents (*Ecological Assessment Standard Operating Procedures and Quality Assurance Manual*, 2002). A level of effort of up to three sampling hours was applied to each of the nine locations from which tissue and benthic community samples were collected.

Aquatic macroinvertebrates for community assessment analysis were generally identified to the family level in the field. Selected organisms of each taxon were preserved in ethanol and retained for future reference.

Aquatic macroinvertebrate species observed to comprise the majority of the community biomass were retained for tissue analysis. The individual organisms were rinsed in distilled water and transferred to tared, resealable polyethylene bags. The bags of sampled organisms were weighed in the field to provide a mass of 6 to 10 grams for each sample location. Samples were retained on ice until custody was transferred to ENTACT field personnel for shipping to the analytical laboratory.

RESULTS

Aquatic macroinvertebrate organisms included in the samples for tissue analysis are summarized in the attached Table 1. In general, the species included in the tissue analysis samples are either in direct contact with the substrate (scrapers) or are likely to bioconcentrate contaminants (predators).

Aquatic macroinvertebrates were generally identified to family level. Leeches (Hirudinea) and aquatic worms (Oligochaeta) were identified to class level, and water mites (Trombidiformes) to suborder level. Results of the community analyses are included in Table 2. Thirty taxa were identified for the area waterways.

Macroinvertebrate Biotic Index (MBI) values were calculated for the sample locations, including East Ditch No.2, which is based on a very limited sampling effort. The Illinois Environmental Protection Agency (IEPA) has used the MBI for stream assessments since 1983 (*Water Monitoring Strategy 2002-2006*, August 2002). This procedure, developed by Hilsenhoff (1982, 1988) for Wisconsin streams, is a semi-quantitative assessment of organic, oxygen-depleting pollution of flowing waters. Table 2 also shows the results of applying the MBI tolerance values for aquatic macroinvertebrate families based solely on organism presence. This approach is a qualitative assessment, resulting in Tolerance Biotic Index (TBI) values, used by the Wisconsin Department of Natural Resources (Lillie and Schlesser, 1994). The results of applying both the MBI and the TBI indices suggest that most of the area waterways have significant oxygen-depleting pollution concerns.

It should be noted that there are limitations to the use of the aquatic macroinvertebrate community results. Not all of the aquatic macroinvertebrate families identified in Table 2 are assigned tolerance values. Although some of these organisms form an appreciable part of the aquatic macroinvertebrate community, they are not considered in the assessment process because the species of these families subsist, and sometimes thrive, regardless of the oxygendepleting status of the habitat. Many of the aquatic bug and beetle species and some of the aquatic fly larvae families are air breathers, so the waters' dissolved oxygen concentrations will have little or no effect on the health of these species. Fourteen of the 30 identified taxa have species that are air breathers, and thus provide limited information for a biological assessment of the aquatic macroinvertebrate communities.

REFERENCES

ENTACT, 2006. Support Sampling Plan for the Old American Zinc Plant Site, Fairmont City, Illinois, Revision 2, 71 pp.

Hilsenhoff, W.L., 1982. *Using a Biotic Index to Evaluate Water Quality in Streams*, Wisconsin Department of Natural Resources Technical Bulletin No. 132, 22 pp.

Hilsenhoff, W.L., 1987. An Improved Biotic Index of Organic Stream Pollution, *The Great Lakes Entomologist*, 20(1):31-39.

Hilsenhoff, W.L., 1988. Rapid Field Assessment of Organic Pollution with a Family-level Biotic Index, *Journal of the North American Benthological Society*, 7:65-68.

Hilsenhoff, W.L., 1998. A Modification of the Biotic Index of Organic Stream Pollution to Remedy Problems and Permit Its Use throughout the Year, *The Great Lakes Entomologist*, 31(1):1-12.

Illinois Environmental Protection Agency, 2002. *Water Monitoring Strategy 2002-2006*, Publication IEPA/BOW/02-005.

Lillie, R.A., and R.A. Schlesser, 1994. Extracting Additional Information from Biotic Index Samples, *The Great Lakes Entomologist*, 27(3):129-136.

M.T. Bosco & Associates, 2006. Baseline Ecological Risk Assessment Work Plan for the Old American Zinc Plant Site, Fairmont City, Illinois, 18 pp.

U.S. Environmental Protection Agency Region IV, 2002. Ecological Assessment Standard Operating Procedures and Quality Assurance Manual, 2002

Additional Analysis of Benthic Communities Former American Zinc Plant

Pursuant to ENTACT's Request, NRC has assessed the potential applicability of selected benthic metrics to the benthic data collected at the Former American Zinc site.

Metrics Described in Numbers 1 through 7

Benthic sampling at the Former American Zinc Site was qualitative in nature. Benthic taxa lists were developed based on qualitative sampling (with a frequency occurrence estimated for the sampled taxa at the time of collection). The data generated from qualitative sampling are not amenable to analysis using metrics which are quantitative in nature and based upon abundance of benthic organisms observed. Specifically, community analyses based on organism or taxa densities, total/relative abundance, Shannon-Wiener Index, or Simpson's Diversity Index, cannot be computed using the Former American Zinc site data.

Potential Applicable Qualitative Metrics

The benthic macroinvertebrate family-level data collected from the Former American Zinc site is useful to assess the benthic communities of the investigated locations. The taxa lists were developed based on qualitative sampling, with a frequency of occurrence estimated for the sampled taxa at the time of collection. This information is appropriate for developing qualitative assessments of the benthic communities.

NRC developed Macroinvertebrate Biotic Index (MBI) values for the sampled locations associated with the Former American Zinc site using a system similar to that used by the Illinois Environmental Protection Agency (IEPA). IEPA uses an MBI metric as a measure of organic, oxygen-depriving pollution in stream environments. In utilizing an MBI, IEPA applies the Hilsenhoff Biotic Index (HBI, Hilsenhoff, 1982, 1987, 1988), which has been refined for use on the taxonomic family level. The HBI system assigns a tolerance value (of low oxygen and high organic waste levels) to aquatic arthropod species found in flowing waters. A higher HBI value, on a scale of 0 to 10, indicates a higher tolerance of low dissolved oxygen and high organic pollution conditions. Implementing the HBI system initially required counting organisms to a 100-count, a semi-quantitative analysis. The HBI count has since been modified to count a maximum of 10 organisms of each encountered taxon. This approach limits bias due to dominance effects of one or two species in a sample (Hilsenhoff, 1998). Using the maximum 10count per taxon, NRC developed MBI values for all of the benthic sampling locations associated with the Former American Zinc site. This was the only semi-quantitative metric developed for the benthic community analysis.

The MBI values developed for the Former American Zinc site can be used to compare the sampling locations with each other, but their use is somewhat limited in that the MBI was developed as a measure of benthic community response to oxygen-depleting organic

wastes (e.g., high biochemical oxygen demand materials) in flowing waters. The lack of flow and continuity of the local waterways at the former American Zinc Plant project area further limits the application of the MBI to the site situation.

Several qualitative metrics can be applied to the collected benthic community data. One of these metrics is the Tolerance Biotic Index (TBI), a variation of the HBI used by the Wisconsin Department of Natural Resources (WDNR, Lillie and Schlesser, 1994). The TBI is the average tolerance value for the taxa assigned tolerance values in a sample.

Other qualitative metrics that can be applied to the project's benthic community data include taxa richness (number of identified taxa in a sample), Community Similarity Index, Jaccard's Coefficient of Community, and Community Loss Index. NRC applied taxa richness to the Former American Zinc benthic data and included the values in Tables 1 and 2. For minimally stressed waterways, these values (5 to 18) would be low. The total number of taxa for all of the benthic communities combined is 30.

The taxa identified in the benthic communities generally reflect stressed conditions, especially limitations due to low dissolved oxygen conditions. Of the 30 taxa identified, greater than half (the three snail families, the nine bug families, the three beetle families, and the mosquito family) represent species that are considered air breathers, and independent of the dissolved oxygen concentrations of the waterways.

Both the Community Similarity Index and Jaccard's Coefficient of Community could be suitably applied to the Former American Zinc site benthic data. To apply either of these metrics, any two sampling sites are compared with each other for the number of shared taxa. The values of both indices range from 0 (no similarity) to 1 (identical taxa lists). The Community Similarity Index and Jaccard's Coefficient of Community have been calculated for the benthic communities sampled as part of the Former American Zinc project the results are tabulated in Table 3. In general, greater similarity, as calculated by both indices, occurs among those benthic communities where the most taxa (13 to 18) were identified. This suggests that the commonality of the sites is not so much a distinction of which taxa the areas will support, but rather whether the sites will support any benthic macroinvertebrate taxa. Benthic macroinvertebrates found at a sampling site are likely those taxa common to the benthic communities of the area. The low similarity values occur because few taxa were found at these sampling locations.

The Community Loss Index (CLI) is a measure of the differences of taxa occurring in the benthic communities in a waterway from a reference condition, typically an upstream location. A CLI value of zero indicates no loss of taxa in the downstream benthic community compared to that of the reference location. The upper end of the CLI range is open-ended (infinity), indicating complete loss of common taxa between the sampled benthic community and the reference community.

For the Former American Zinc site, CLI values can be developed for those benthic communities that can be considered to fall into a geographic continuum of a waterway. Because of the intermittent nature of Rose Creek and West Ditch No. 1, there are two

separate flow patterns that can be assessed for the CLI metric: East Ditch to upper Rose Creek and Schoenberger Creek.

For East Ditch No. 1, the CLI values are:

E Ditch 1 at origin \rightarrow E Ditch 1 at mouth of E Ditch 2 \rightarrow Rose Cr at mouth of E Ditch 1 CLI = 0.31 CLI = 0.31

For the Schoenberger Creek (S Cr) system

S Cr above Collinsville Rd \rightarrow S Cr at mouth of Eng. Ditch \rightarrow S Cr below Eng. Ditch CLI = 0.28 CLI = 0.54

These values suggest little loss in benthic community diversity through the stream systems. It should be noted that the upstream, or reference, location on East Ditch No. 1 lies on the former American Zinc Plant site, and may be affected by former operations at the site. In addition, culverts connecting E. Ditch 1 and E. Ditch 2 were observed to be heavily clogged with sediment, effectively isolating the two ditches except under high flow conditions. Also, the upstream Schoenberger Creek location may be subject to ecological stresses in that it is situated approximately 1,000 feet downstream of a railroad yard.

REFERENCES

Hilsenhoff, W.L., 1982. *Using a Biotic Index to Evaluate Water Quality in Streams*, Wisconsin Department of Natural Resources Technical Bulletin No. 132, 22 pp.

Hilsenhoff, W.L., 1987. An Improved Biotic Index of Organic Stream Pollution, *The Great Lakes Entomologist*, 20(1):31-39.

Hilsenhoff, W.L., 1988. Rapid Field Assessment of Organic Pollution with a Family-level Biotic Index, *Journal of the North American Benthological Society*, 7:65-68.

Hilsenhoff, W.L., 1998. A Modification of the Biotic Index of Organic Stream Pollution to Remedy Problems and Permit Its Use throughout the Year, *The Great Lakes Entomologist*, 31(1):1-12.

Lillie, R.A., and R.A. Schlesser, 1994. Extracting Additional Information from Biotic Index Samples, *The Great Lakes Entomologist*, 27(3):129-136.

STL Burlington Colchester, Vermont

Sample Data Summary Package

SDG: 115113

Job: Fairmount City Bioassay

July 24, 2006

Ms. Patricia Thomson ENTACT & Associates LLC 1010 Executive Court Suite 280 Westmont, IL 60559

Re: Laboratory Project No. 26000 Case: BIOASSAY; SDG: 115113

674472

674473

674474

674475

674476

674477

674478

674479

674480

674481 674482

674483

674484 674485

674486

BT-SD05

BT-SD001

BT-SD06

BT-SD13

BT-SD36

PT-SD-31

PT-SD-34

PT-16

PT-39

PT-REF

EQBLK2

PT-SD-31DUP

BT-08 BT-SD34

BT-SD06-DUP

Dear Ms. Thomson:

STL Burlington 208 South Park Drive, Suite 1 Colchester, VT 05446

Tel: 802 655 1203 Fax: 802 655 1248 www.stl-inc.com

June 30 th and July 1 st , 200 as follows:	06. Laborato	ry identific	ation num	bers were ass	igned, and designated
	Client Sample ID			Sample <u>Date</u>	Sample <u>Matrix</u>
	Received:	07/01/06	ETR No:	115113	
674470	BT-SD-037 BT-SD-022 EQBLK1			06/29/06 06/30/06	Tissue Tissue Water
	Received:	06/30/06	ETR No:	115114	

06/27/06

06/27/06

06/28/06

06/28/06 06/28/06

06/28/06

06/29/06

06/29/06

06/28/06

06/28/06

06/28/06

06/28/06

06/28/06

06/29/06

Enclosed are the analytical results for the samples that were received by STL Burlington on

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal.

The samples were homogenized prior to digestion. The samples were digested for metals by SW846 Method 3050 and analyzed for metals by SW846 Method 6010B, using a project

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Water

defined target analyte list. Mercury was prepared and analyzed by SW846 Method 7471A. There were no site-specific matrix spike and duplicate analyses requested for the field samples. A batch matrix spike and duplicate analysis was performed on the sample PT-REF for Method 6010B analysis. There were good recoveries found in the matrix spike analysis and there was good correspondence in the interanalysis comparison for the target elements. A serial dilution analysis was performed on the digestate of sample PT-REF and the results of this analysis indicated a matrix interferences specific to zinc. A laboratory control sample was prepared and analyzed in association with the sample set and the target elements recovered well in those analyses. The analysis of the digestion blank associated with the analytical work did yield trace concentrations of cadmium, lead, mercury and zinc. Equipment blanks, labeled EQBLK1 and EQBLK2, were generated at the time of tissue preparation and carried through the analytical process. The analysis of the equipment blanks yielded a trace concentration of cadmium and zinc.

The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 655-1203.

Sincerely,

Kristine Dusablon Project Manager

oth Dusable

Enclosure

STL Burlington Data Qualifier Definitions

Organic

- U: Compound analyzed but not detected at a concentration above the reporting limit.
- J: Estimated value.
- N: Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds (TICs) where the identification of a compound is based on a mass spectral library search.
- P: SW-846: Greater than 40% difference for detected concentrations between two GC columns. Unless otherwise specified the higher of the two values is reported on the Form I.

CLP SOW: Greater than 25% difference for detected concentrations between two GC columns. Unless otherwise specified the lower of the two values is reported on the Form I.

- C: Pesticide result whose identification has been confirmed by GC/MS.
- B: Analyte is found in the sample and the associated method blank. The flag is used for tentatively identified compounds as well as positively identified compounds.
- E: Compounds whose concentrations exceed the upper limit of the calibration range of the instrument for that specific analysis.
- D: Concentrations identified from analysis of the sample at a secondary dilution.
- A: Tentatively identified compound is a suspected aldol condensation product.
- X,Y,Z: Laboratory defined flags that may be used alone or combined, as needed. If used, the description of the flag is defined in the project narrative.

Inorganic/Metals

- E: Reported value is estimated due to the presence of interference.
- N: Matrix spike sample recovery is not within control limits.
- Duplicate sample analysis is not within control limits.
- B: The result reported is less than the reporting limit but greater than the instrument detection limit.
- U: Analyte was analyzed for but not detected above the reporting limit.

Method Codes:

- P ICP-AES
- MS ICP-MS
- CV Cold Vapor AA
- AS Semi-Automated Spectrophotometric

(Report	t To:			_			Ш	To:							Shaded A	rees For Internal	¥ 5	of	
*				Contac	t: <u>P47</u>	THO	M 50	71)_			Cont	lact:	SA	ME					Lab L	ot#	•		
SEVERN	J	CTI		Compa	ny: <u>£/U</u>	TACT	-				Согг	ipany: _								Socied	. Sem	ples Sea	Jari
TRENT		STL	1	1	s: <i>[0] 0</i>	-						ress:							LIMAGENTATO COLUM				
STL Chicago				54	ute:	280	Wes	TMU	$_{m}I$	6083	7									and on los		ples Int	
2417 Bond Street				Phone:	630	-98	6 -	29	00		Pho	ne:							100 N.C. 30 "	4 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	No.	es No	
University Park, IL (6		Fax:	630	-98	6-	06	53		_ Fax:			_						ature C of C			
Phone: 708-534-52 Fax: 708-534-52					pth		0	enT.	uct, c	um	_ PO#	:			Quote:						4.73	r	
Sampler Name:			Signature:		1/0 00	_	Refr			- 3				4	$\delta \mathcal{S}_{i} \in$			19.	With	n Held Time	Prese	rv. Indic	ated
Jerry K	e (1)	<u> </u>	yen	y 1	KUL	V	17		1.77	F. 3	.53 J				- 1. th	ilk:	4	23	***	No No	Yes	No	NA
Project Name:			Project Nu	mber:	<i>()</i>	/	Yes			, P	1980. S		94		3			3.0	H	Check OK	Res (il ₂ Chec	k OK
OAZ R			CI	727	}		1	•	*			4.4	44.	1/3 /4	$\gamma^{ab} \mathcal{A}^{b}$		***		Yes	No NA	Yes	No	NA
Project Location	: T 4	CHYTI		PY:	/	/	ı	-2												labels and C	QC Agr	•••	
Lab PM: Bon	#if	·	F	er:		<u>/</u>	Materix	5	13				1			}	ŀ			HI No	COL	not pre	######################################
Laboratory ID	MS-MSD		ient ple ID		Sam Date	pling Time	2	Comp/Grab	TOTAL KETALS							 			^	dditional Anai	yses / l	Remarks	
	_	BT- 5D -	037		429/06	1530	0	6	x				<u> </u>			ļ			 				
		BT-SD-			130/06			6	X														
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1-0/0-		<u> </u>					1	†	1			1	<u> </u>					
0.	7						1					 				 			 		· <u> </u>		
	\dashv						╁	-				 -	 	├ ┈─	 	<u></u>	 	<u> </u>	 				
					<u> </u>	 		├				 -	-			 	ļ	 	 				
	}						ļ	ļ	 			ļ	 	<u> </u>	ļ	ļ	 	ļ	<u> </u>				
		· · · · · · · · · · · · · · · · · · ·				<u> </u>	<u> </u>							<u> </u>	<u> </u>	<u> </u>			<u> </u>				
						<u> </u>												1	}				
1							1																
									<u> </u>										TOTAL	L METAL.	5= R	CRAE	3+2
																	1		,		-		
RELINOUISHED B	Y	V 0 00	COMPANY	0.0		DATE			TIME A		Rf	200	AV		7 1	11		ANY	<u> </u>	DATE .		TIME	
RELINOUSHED B	*	Willy	COMPANY	TC_	6	DATE DATE	06		TIME &					13	377	7	27	ANY	<u> </u>	6/30/0	6	105	0
RELINGUISTED A	Yes,	13/11	COMPANY	17	6	-30-	60		TIME	2		REVIEW	100		100	in	COMP	STC	VT	7-1-0	6	TIME 	3 ′
WW = Wastewater	/N	SE ~ Sediment		C.	ontainer K stic		Pi 1. HCi,		rative K	ey	CC	DMMENT	rs							Date Received			
W = Water		SO= Solid DS ≈ Drum Sol	}	2. VOA		1	2. H29	O4, C	ool to 4°														.J:- 1
S - Soil St = Sludge		DL = Drum Liq	L L	4. Ami	ber Glass		3. HNO 4. NaO	H, Coc	of to 4°										1 '	Courier:	Ka	nd Deliver	
MS = Miscellaneo OL = Oil	us	L ≈ Leachate WI = Wipe		5. Wid 6. Oth	emouth Glas er		 NaC Coo 		Cool to 4)•									•	Bill of Lading			
A = Air		o - Meci	DINVETT.				7. Non				<u> </u>												

		Re	port To:					(To:							Shaded Areas For Internal Use of
		Cor	ntact: PAT	Tho	2050	~			Cont	act:	510	18					Lab Lot#
SEVERN	STL	,	mpany: <u>£</u> \mu							pany:							Package Sealed Samples Sealed
TRENT	SIL]	tress: 1010	•					l .	ess:							Yes No.
STL Chicago		j	one: 630	,						ne:							Received on los Samples Intact
2417 Bond Street University Park, IL 604	166		one: <u>630</u>			_				ie							You No Yes No Temperature C of Cooler
Phone: 708-534-5200 Fax: 708-534-5211		l l	Mail: Pthom			_				:			Quote:				
Sampler Name:	. <u>.</u>	Signature:	0.0		Refre	•								igo († 27 De septembro	130		Within Hold Time Preserv. Indicated
Jerry Helly		genyke			#/C	*		19:01	N (28)								Ma Yes No NA
Project Name: / UAZ R		Project Number			Velia												pri Check OK Ree Cl, Check OK
		Date Required		TAT		X		STATE OF		Carlo S		K	1				THE NO MA
Lab PM; Bounge	+ COTL	Hard Copy: Fax:			Matutx	quantity of	747 S										Lift has present
Laboratory S		ient ple iD	Samp Date	oling Time	3	Comp	3 7										Additional Analyses / Remarks
	BT- SD	05	6/27/06	1430	0	2	X										
	BT- SD		4/27/08			حرا	X										
	BT- SD	06	6/28/00		T		χ										
	BT-SD	06- DUI	2 6/28/00	0845	0	2	X			ļ							
	BT - St	08	6/28/06	1100	0	G (X					<u> </u>	<u> </u>				
	BT- S	034	6/28/00	1530	0	<u>a</u>	X					<u> </u>					
	BT - S	013	1/24/06	0930	6	4	X					<u> </u>					
	BT- 5	D36	9/29/00				X	{									
																	TOTAL METALS =
]										RCNA8+Z 448
RELECTION SHED BY	Kelly	COMPANYRC	, 6-	DATE - C	06	15	ME	>		CENED		L	21	11		TAG	CT 6/28/08 TIME 1510
RELINGUISHER	13/11	COMPANY SUTACT		DATE Z.G.	26		IME 4	2	10	ZENED	Y N	leli.	SK	Ble	COMP 2 51	PANY L VT	DATE TIME
WW Wastewater	Matrix Key SE = Sediment	1 1	Container Ke Plastic		Pre		tive Ke	y	CC	MMENT	S						Date Received / /
W = Water S = Soil	SO≠ Solid DS ≈ Drum Sol	2.	VOA Vial Stenie Plastic	1	2. H2SO 3. HNO3	4, Cool	to 4°										Courier: Hand Delivered
St. = Sludge MS = Miscellaneous	DL ≈ Drum Liq L ≈ Leachate	jund 4.	Amber Glass Widemouth Glass	1.	 NaOH NaOH 	Cool t	o 4 °										Bill of Lading
OL = Oil A = Air	WI ≈ Wipe O ≈ <i>#L & Co</i>	6.	Other	,	 Cool (None 	o 4°			L	T							STI 9209 (ASA)

	ĺ		Report To:					1	Го:							Shaded Areas For Internal	<u> </u>
	*		Contact: Pat Thomas	DN.				Cont	act:	Sai	. g.					Lab Lot#	₹
SEVER	N T	STL	Company: Entact Address: 1010 Execu	tive i	(A.)	He.	2BC_									Parison Spand	Samples Sealed
			Westmont 11	6	15(4			1_								Received on ice	Samples intact
STL Chicago 2417 Bond Street			Phone: 640-486- 29	00				Phon	le:							You No	Yes No
University Park, II		66	Fax: 670-986-0					Fax:								Temperature 'C of C	<u> </u>
Phone: 708-534- Fax: 708-534-			E-Mail: FThomscu	en	act	. CB	عبر	PO#	;			Quote:					
Sampler Name		Signature:	\cap	Refi							;			11:	¥. Ľ1	Within Hold Time	Preserv. Indicated
Jon Gu	mt	ON/Matt Schromm CAZ RI Project Nu	you Gumit	/	Cont.								\$	14.	1	Yes No	Yes No NA
			mber:	Yes			1, 3					g, 14			1	pH Check QK	Res Cl ₂ Check OK
America			1727	Pre		4		4.			10.5		4.5		-13	Yes No NA	Yes No NA
Project Location	on:		red Normal TAT			5										Sample Labels and C	DC Agree
Lab PM: Bon	ena VII E	Hard Co	py:	Matrix	Grat	2746		İ			}	}				Yes No	COC not present
Laboratory ID		Client Sample ID	Sampling Date Time	Ē	Comp Grab	107										Additional Analy	rses / Remarks
		PT-50-31	428/0 1030	00	2	X	1				1						
		PT-50-31 dup			_	~											
		PT-50-34	6/28/06 1110		C	~	1							1	1	HOLD	
		PT-85-16685	W 6/24/04 130		C	X											
		PT-30-16(2)	-39 428/46 1331	0	C	~										HOLD	
		PT-Ref	6/29/66 1113	-0	C	Ŷ									1		
						1											
 	ļ			_	<u> </u>	ļ						ļ	<u> </u>	<u> </u>			
	 			_	<u> </u>	ļ	1_1		 		.		ļ	<u> </u>	ļ	TOTAL METAL	15=
	 			_	1		11				1	<u> </u>	<u> </u>	↓	<u> </u>	RCRA8+	7 ngu
	<u> </u>				<u>L</u> _	<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>		
RELINQUISHED INCLINQUISHED	<u> </u>	COMPANY	DATE			TIME	335	R	CEIVE	BY		The RO	- <u>£</u>	COMI COMI	PANY	6/29/06 DATE	TIME 7335
HHY.	7	SIII ENTA Matrix Koy	6-29 Container Key.	<u>-06</u>			<u>540</u>		DMMENT	· ·			\cong		LVT	6-30-06	0930
WW = Wastewar	ter	SE = Sediment	Plastic	I. HC	l, Cool		-7	5	JMMEN! Cara	los	callo.	.fel	64 A	KC	ana	Date Received	
W = Water S - Soil		SO= Solid DS = Drum Solid	VOA Vial Sterile Plastic		SO4, Co 103, Co	ool to 4° ol to 4°			2054	L	colle. tran	sfor	(کرے	to E	ntec	Courier:	Hand Delivered
St = Studge		Dt = Drum Liquid	4. Amber Glass	4. Na	OH, Co	ol to 4°	4-			7		·				3	(
MS = Miscellar OL = Oil	neous	L = Leachate WI = Wipe	5. Widemouth Glass 6. Other	6. Co	ol to 4°	Cool to	7									Bill of Lading	
A = Air	-	-> 0 = Vegetation	bog	7. No			is a part o		T		!						STI-8208 (060

Sample Data Summary Package For Metals

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

ar	## :	STL BURLI	ngton		Contract:	26000			
	- '.								
'ap C		STLVT	Case No.:	BIOASSAY	SAS N	0.:	SDG No.	: 1151	13
30M M	io . :		 .						
		EPA	Sample No.			Lab Sample ID.			
		BT~	08			674476			
		BT-	SD001			674473			
		BT~	SD-022			674470			
		BT-	SD-037			674469			
		BT-	SD05			674472			
		BT-	SD06			674474			
		BT-	SD06-DUP			674475			
		BT-	SD13			674478			
			SD34			674477			
			SD36			674479			
		EQB				674471			
		ROB				674486			
		PT-				674483			
		PT-1				674485		1	
			RRFD			674485DP		•	
			REFS			674485MS			
			SD-31			674480			
		PT	SD-31DUP			674481			
Wara	ነ ፕሮ፱	interelemen	t correction	s applied?				- 4	YES
							,	es/No	113
Were			corrections				Y	es/No	YRS
		=	v data genera background				Y	es/No	NO
	app	lication or	Dackground (COLLECTIONS				,	
Comme	nts:								
cont abov subm	ract, e. R Litted	both technical both the both t	ically and for he data contr s has been as	or completend ained in this athorized by	ess, for oth s hardcopy of the Labora	the terms and content than the conditate package and tory ollowing signature.	ditions de	stailed	
ywgna	ture:				Name:				
Date:	:				Title	1			

COVER PAGE - IN

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

	_		_	_	_
B	T-	08			

b Name:	STL BURI	LINGTON	Con	tract: 26000			
Lab Code:	STLVT	Case No.:	BIOASSAY	SAS No.:		SDG No.:	115113
Matrix (so	ll/water):	TISSUE		Lab Sample ID	:	674476	
Level (low,	/med):	LOW		Date Received	:	06/30/06	
% Solids:	100.0						
		- Concentration T	Inits (ug/L or	mg/kg dry weight);		MG/KG	
		CAS No.	Analyte	Concentration	C	Q M	
		7440-38-2	Arsenic	0.37	Ū	P	- j
		7440-39-3	Barium	3.0	В	P	1
		7440-43-9	Cadmium	2.2	1	[P	٦
		7440-47-3	Chromium	0.16	В) P	٦
		7439-92-1	Lead	4.9	Ī	P	٦
		7439-97-6	Mercury	0.013	Ū	CV	Ī
		7782-49-2	Selenium	0.69	В	P	ĺ
		<u></u>					- ;
		7440-22-4	Silver	0.16	סן	P	İ

Color Before:	dark brown	Clarity Before:		Texture:	coarse
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:					
					·

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

_			 _
BT-	SDO	001	

ab Name:	Name: STL BURLINGTON			Contract: 26000					
Lab Code:	STLVT	Case No.:	BIOASSAY	SAS No.:			SDG N	io.:	115113
Matrix (soi	l/water):	TISSUE		Lab	Sample ID	:	6744	73	
Level (low/	med):	LOW		Date	B Received	:	06/3	0/06	
% Solids:	100.0	_							
		Concentration 1	Unita (ug/L o	mg/kg dry	y weight):		MG/1	KG	_
		CAS No.	Analyte	Concer	ntration	С	٥	м	
		7440-38-2	Arsenic		0.41	В	 	 P] }

CAS No. Analyte		Concentration	C	۵	м
7440-38-2	Arsenic	0.41	В	 	P
7440-39-3	Barium	0.89	В		P
7440-43-9	Cadmium	0.46	T	1	P
7440-47-3	Chromium	0.15	В		P
7439-92-1	Lead	2.4	1	1	P
7439-97-6	Mercury	0.029			CV
7782-49-2	Selenium	0.74	В		P
7440-22-4	Silver	0.15	0		P
7440-66-6	Zinc	24.6	1	E	P

Color Before:	dark brown	Clarity Before:		Texture:	coarse
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:					
-					

INORGANIC ANALYSES DATA SHEET

0.16 |0

E

11.8

P

P

EPA SAMPLE NO.

	_	_	_	
BT-	SD-	02	2	

ab Name:	STL BURL	INGTON	Contra	ct: 26000			
Lab Code:	STLVT	Case No.:	BIOASSAY SAS	No.:	s	DG No.:	115113
Matrix (soi	1/water):	TISSUE		Lab Sample ID:	6	74470	
Level (low/	med):	TOM		Date Received:	. 0	7/01/06	
% Solids:	100.0						
		Concentration U	nits (ug/L or mg	/kg dry weight):		MG/KG	
		CAS No.	Analyte	Concentration	С	Q M	
		7440-38-2	Arsenic	0.37	U) P	- j
		7440-39-3	Barium	1.5	В	P	
		7440-43-9	Cadmium	0.031	0	P	<u> </u>
		7440-47-3	Chromium	0.37	B	P	1
		7439-92-1	Lead	0.32	В	P	
		7439-97-6	Mercury	0.014	O	67	7
		7782-49-2	Selenium	0.82	B	P	7

Silver

Zinc

7440-22-4

7440-66-6

Color Before:	dark brown	Clarity Before:		Texture:	coarse
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:					
-					

INORGANIC ANALYSES DATA SHEET

0.20 B

0.15 B

0.014 U

0.62 B

0.15

E

13.3

₽

₽

CV

₽

P

P

EPA SAMPLE NO.

 	_			 _
BT-	SD-	03	7	

.b Name:	STL BURI	INGTON	Cont	ract: 26000			· —	
Lab Code:	STLVT	Case No.:	BIOASSAY	SAS No.:		SDG N	io.:	115113
Matrix (soil	L/water):	TISSUE		Lab Sample I	D:	6744	69	
Level (low/m	med):	LOW		Date Receive	d:	07/0	1/06	
% Solids:	100.0							
		- Concentration	Jnits (ug/L or	mg/kg dry weight)	:	MG/I	KG	_
		CAS No.	Analyte	Concentration	C	Q	м	
		7440-38-2	Arsenic	0.35	U	 	P	! [
		7440-39-3	Barium	0.82	B	1	P	Ī
		7440-43-9	Cadmium	0.050	В	ī	P	Ī

Chromium

Mercury

Selenium

Silver

Zinc

Lead

7440-47-3

7439-92-1

7439-97-6

7782-49-2

7440-22-4

7440-66-6

Color Before:	dark brown	Clarity Before:		Texture:	coarse
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:					
-					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

 		_	_	_	_
BT-	SD0	5			

b Name:	STL BURL	INGTON	Contract: 26000					
Lab Code:	STLVT	Case No.:	BIOASSAY SA	S No.:		SDG N	o.:	115113
Matrix (soi	1/water):	TISSUE		Lab Sample ID:	:	67447	2	
Level (low/	med):	LOW		Date Received	•	06/30	/06	
% Solids:	100.0	_						
		Concentration U	Inits (ug/L or mg	g/kg dry weight):		MG/I	G	
		CAS No.	Analyte	Concentration	c	Q	М	
		7440-38-2	Arsenic	0.46	В		P	
		7440-39-3	Barium	0.65	B		P	İ
		7440-43-9	Cadmium	0.90	1		P	
		7440-47-3	Chromium	0.19	В		P	
		7439-92-1	Lead	2.1	Ţ .		P	
		7439-97-6	Mercury	0.015	U		CV	
		7782-49-2	Selenium	1.1	В		P	
		7440-22-4	Silver	0.15	ט		P	
		7440-66-6	Zinc	50.0		E	P	

Color Before:	dark brown	Clarity Before:		Texture:	coarse
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:					
-					

INORGANIC ANALYSES DATA SHEET

0.17 B

0.013 U

1.0 B

0.15 U

E

22.1

CV

p

₽

P

EPA SAMPLE NO.

	_		_	_	•
BT-	SDO	6			

						1		
b Name:	STL BURL	INGTON	Contra	26000				
Lab Code:	STLVT	Case No.:	BIOASSAY SAS	No.:	8	DG No		115113
Matrix (soi	1/water):	TISSUE		Lab Sample ID:	9	57447	4	
Level (low/	med):	LOW		Date Received:	9	06/30	/06	
% Solids:	100.0	_						
		Concentration U	nits (ug/L or mg	/kg dry weight):		MG/K	G	-
		CAS No.	Analyte	Concentration	С	Q	Ж	
		7440-38-2	Arsenic	0.36	ਹ		P	
		7440-39-3	Barium	0.42	ן שן		P	
		7440-43-9	Cadmium	0.077	В		P	
		7440-47-3	Chromium	0.10	ן ס		P	

Lead

Mercury

Silver

Zinc

Selenium

7439-92-1

7439-97-6

7782-49-2

7440-22-4

7440-66-6

Color Before:	dark brown	Clarity Before:		Texture:	coarse
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:					
-					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

BT-	SD06	-DUP	

						L		
Name:	STL BURI	LINGTON	Cont	zact: 26000				
Lab Code:	STLVT	Case No.:	BIOASSAY S	on ea		SDG N	· . :	11511
Matrix (soil	l/water):	TISSUE		Lab Sample ID:	1	67447	75	
Level (low/m	med):	LOW		Date Received:	:	06/30	0/06	
% Solids:	100.0							
			nits (ug/L or n	Concentration	Te	MG/I	(G	- I
		CAS No.	, mai, te	000000000000000000000000000000000000000			"	
		7440-38-2	Arsenic	0.35	Ū		P	1
		7440-39-3	Barium	0.41	U	1	P	İ
		7440-43-9	Cadmium	0.069	B	1	P	Ī
		7440-47-3	Chromium	0.098	ס	1	P	ļ
		7439-92-1	Lead	0.36	B		P	
		7439-97-6	Mercury	0.015	Ū		CV	i

Selenium

Silver

Zinc

7782-49-2

7440-22-4

7440-66-6

0.87 B

0.15 |0 |

18.3

P

P

P

Color Before: dark brown Clarity Before: Texture: coarse	
Color After: pale yellow Clarity After: clear Artifacts:	
Comments:	

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

_	_	_	_
BT-	SD1	13	

		Name:	STL BURL	NGTON	Co	ntract:	26000		
•		Code:	STLVT	Case No.:	BIOASSAY	SAS No.:		SDG No.:	115113
	Mati	ix (soil	/water):	TISSUE		Lab	Sample ID:	674478	
	Leve	l (low/m	ed):	LOW		Date	e Received:	06/30/06	

% Solids: 100.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	C	Ω	K
7440-38-2	Arsenic	0.62	В	 	T _P
7440-39-3	Barium	1.0	B		P
7440-43-9	Cadmium	1.3	Ī		P
7440-47-3	Chromium	0.21	В		P
7439-92-1	Lead	1.4	Ī		P
7439-97-6	Mercury	0.014	U	1	CV
7782-49-2	Selenium	0.88	B	$\overline{}$	P
7440-22-4	Silver	0.15	Ū		P
7440-66-6	Zinc	32.6	Ī	E	P

Color Before:	dark brown	Clarity Before:		Texture;	coarse
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:					
-					

INORGANIC ANALYSES DATA SHEET

0.49 B

0.16

E

75.8

P

| P |

P

EPA SAMPLE NO.

B'	r-sd3	34	

						l		
,b Name:	STL BURI	INGTON	Contra	et: 26000				
Lab Code:	STLVT	Case No.:	BIOASSAY SA	S No.:		SDG N	io.:	115113
Matrix (soi	1/water):	TISSUE		Lab Sample ID:		6744	77	
Level (low/	med):	LOW		Date Received:		06/3	0/06	
% Solids:	100.0							
		CAS No.	Nnits (ug/L or mg	/kg dry weight):	c	MG/1	KG M	_
		7440-38-2	Arsenic	0.37	Ū		P	
		7440-39-3	Barium	10.9	В		P	
		7440-43-9	Cadmium	0.50	1		P	
		7440-47-3	Chromium	0.10	ם		P	
		7439-92-1	Lead	0.22	В		P	
		7439-97-6	Mercury	0.017	0		CV	

Silver

Zinc

Selenium

7782-49-2

7440-22-4

7440-66-6

Color Before:	dark brown	Clarity Before:		Texture:	coarse
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:					
-					

INORGANIC ANALYSES DATA SHEET

13.3

E

EPA SAMPLE NO.

 	_	
BT-	3D36	

						,		
ab Name:	STL BURL	INGTON	Contro	act: 26000		' _		
Lab Code:	STLVT	Case No.	BIOASSAY SA	S No.:		SDG No	. :	115113
Matrix (soi	1/water):	TISSUE		Lab Sample ID:	:	674479		
Level (low/	med):	LOW		Date Received:	:	06/30/	/06	
% Solids:	100.0	_						
		- Concentration	Units (ug/L or mo	g/kg dry weight):		MG/KG	3	-
		CAS No.	Analyte	Concentration	С	Ω	M	
		7440-38-2	Arsenic	1.1	\vdash		P	
		7440-39-3	Barium	13.3	B	1	P	
		7440-43-9	Cadmium	0.096	В		P	
		7440-47-3	Chromium	0.18	B	1	P	
		7439-92-1	Lead	0.50	В		P	
		7439-97-6	Mercury	0.016	ן סן]	CV	
		7782-49-2	Selenium	0.72	В		P	
		7440-22-4	Silver	0.15	ا ما	1	P	

7440-66-6

Zinc

Color Before:	dark brown	Clarity Before:		Texture:	coarse
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:					
-					

INORGANIC ANALYSES DATA SHEET

0.017 |

0.48 U

0.20 | 0

10 E

0.19

CV

₽

₽

P

EPA SAMPLE NO.

	RQBLK1	

							Ĺ		
ي : Name در	TL BURLING	TON	Co	ntract: 26	000				
Lab Code: S	STLVT	Case N	o.: BIOASSAY	SAS No.:			SDG N	io.:	115113
Matrix (soil/	water):	TISSUE	~ ~~~~~~~~~	Lab S	ample ID	:	6744	71	
Level (low/me	d): <u>LO</u>	w		Date :	Received	:	07/0	1/06	
% Solids: 1	100.0								
_									
	Cor	ncentratio	on Units (ug/L or	mg/kg dry	weight):		MG/I	KG	_
	<u></u>	CAS No.	Analyte	Concent	ration	Te		м	1
	1	CAS NO.					•	~	Ì
	7	440-38-2	Arsenic		0.47	U		P	Ì
	7	440-39-3	Barium	Ī	0.54	U		P]
	<u> </u>	440 42 0	Cadmium	1	0.046	B	7	P	7
	7	440-43-9	Cacustum	i	0.010	1-	ı	-	1
	<u> </u>	440-43-9 440-47-3			0.13	10	1	P	<u> </u>

Mercury

Silver

Zinc

Selenium

7439-97-6

7782-49-2

7440-22-4

7440-66-6

Color Before:	colorless	Clarity Before:	clear	Texture:
Color After:	colorless	Clarity After:	clear	Artifacts:
Comments:			·	
-				

INORGANIC ANALYSES DATA SHEET

Date Received:

EPA SAMPLE NO.

06/30/06

								EQBLR2	
ab Name:	STL BURLIN	GTON	Co	ntract:	26000				
Lab Code:	STLVT	Case No.:	BIOASSAY	SAS No.:		SDG	No . :	115113	_
Matrix (goi	1/water).	TT CCITE		T.ah	Sample ID:	6744	186		

% Solids: 100.0

FOM

Level (low/med):

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	C	Q	M
7440-38-2	Arsenic	0.47	Ū	 	P
7440-39-3	Barium	0.54	ס		P
7440-43-9	Cadmium	0.040	ען		P
7440-47-3	Chromium	0.13	ס		P
7439-92-1	Lead	0.20	۵		P
7439-97-6	Mercury	0.017	ס		CV
7782-49-2	Selenium	0.48	ס		P
7440-22-4	Silver	0.20	סו		P
7440-66-6	Zinc	0.53	В	R	P

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	colorless	Clarity After:	clear	Artifacts:	
Comments:					
_					
					

INORGANIC ANALYSES DATA SHEET

0.57 B

1.7

0.016 U

0.56 B

84.9

0.15 | 0

B

P

P

CV

P

₽

P

EPA	SAMPLE	NO.	

_	_	_	_	_	
DT-	. 1 4				

ıb Name: S	TL BURL	INGTON	Co	ntract:	26000				
Lab Code: S	TLVT	Case No.:	BIOASSAY	SAS No.:			SDG N	10.:	115113
Matrix (soil/	water):	TISSUE		Lab	Sample ID	:	6744	83	
Level (low/med	d):	LOW		Date	e Received	:	06/3	0/06	
% Solids: 1	.00.0								
· <u>-</u>	.00.0	•							
<u>-</u>		CAS No.	Analyte		ntration	c	MG/1	м	_
<u>-</u>		CAS No.	Analyte Arsenic		ntration 0.35	ט	<u>-</u>	M	_] <u>1</u>
<u>-</u>		CAS No.	Analyte		ntration		<u>-</u>	м	_] <u> </u>

Chromium

Mercury

Selenium

Silver

Zinc

Lead

7440-47-3

7439-92-1

7439-97-6

7782-49-2

7440-22-4

7440-66-6

Color Before:	green	Clarity Before:		Texture:	coarse
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:					
_					

INORGANIC ANALYSES DATA SHEET

0.93

1.3

0.27 B

0.016 U

0.15

B

E

0.45

19.8

P

P

₽

CV

P

P

P

EPA SAMPLE NO.

 	_	_		 	 _
	P	C - F	REF		

b Name: STL BUF	LINGTON	Cont	ract: 26000				
Lab Code: STLVT	Case No.	BIOASSAY	BAS No.:		SDG N	lo . :	115113
Matrix (soil/water)	TISSUE		Lab Sample ID	:	67448	35	
Level (low/med):	TOM		Date Received	:	06/30	0/06	
% Solids: 100.0	_						
	Concentration	Units (ug/L or	mg/kg dry weight):		MG/R	KG	_
	CAS No.	Analyte	Concentration	C	Q	м]
	7440-38-2	Arsenic	0.35	U	 	P	<u>.</u>]
	7440-39-3	Barium	5.9	В	1	I P	7

Cadmium

Mercury

Selenium

Silver

Zinc

Lead

Chromium

7440-43-9

7440-47-3

7439-92-1

7439-97-6

7782-49-2

7440-22-4

7440-66-6

Color Before:	green	Clarity Before:		Texture:	coarse
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:					
<u>-</u>					

INORGANIC ANALYSES DATA SHEET

4.0

0.42 B

1.3

0.015

0.15

B

K

0.83

287

P

₽

₽

CV

P

P

P

RPA SAMPLE NO.

_				_	_	_
	PT-	SD - 3	1			

b Name:	STL BURI	LINGTON	Cor	ntract:	26000				
Lab Code:	STLVT	Case No.:	BIOASSAY	SAS No.:			SDG N	10. :	115113
Matrix (soi	l/water):	TISSUR	·	Lab	Sample ID	:	6744	80	
Level (low/	med):	LOW		Dat	e Received	:	06/3	0/06	
% Solids:	100.0								
		Concentration U	nits (ug/L or	mg/kg dr	y weight):		MG/	KG	
		CAS No.	Analyte	Conce	ntration	C	Q	M]
		7440-38-2	Arsenic		0.35	Ū		P	<u>(</u>
		7440-39-3	Barium		4.2	В		P	Ī

Cadmium

Chromium

Mercury

Silver

Zinc

Selenium

Lead

7440-43-9

7440-47-3

7439-92-1

7439-97-6

7782-49-2

7440-22-4

7440-66-6

Color Before:	green	Clarity Before:		Texture:	coarsa
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:					
-	 				

INORGANIC ANALYSES DATA SHEET

3.7

0.90

276

0.016

0.29 B

0.53 | B |

0.15 0

Ū

B

₽

P

P

CV

P

P

P

EPA SAMPLE NO.

_					
	PT-	SD-	31D	JP qt	

o Name: S	TL BURLI	NGTON	Contr	act: 26000		Ĺ		
	TLVT	Case No.:	BIOASSAY SA	S No.:		SDG N	o.:	115113
Matrix (soil/	water):	TISSUE		Lab Sample ID	:	67448	31	
Level (low/me	d): j	LOW		Date Received	:	06/30	0/06	
% Solids: 1	00.0							
	ď	Concentration U	nits (ug/L or ma	g/kg dry weight):		MG/R	(G	_
	<u></u>	CAS No.	Analyte	Concentration	C	Q	M	
	ļ	7440-38-2	Arsenic	0.36	U		P	
	Ĭ	7440-39-3	Barium	3.5	В		P	j

Cadmium

Chromium

Mercury

Silver

Zinc

Selenium

Lead

7440-43-9

7440-47-3

7439-92-1

7439-97-6

7782-49-2

7440-22-4

7440-66-6

Color Before:	green	Clarity Before:		Texture:	coarse
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:					

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON Contract: 26000

Lab Code: STLVT Case No.: BIOASSAY SAS No.: SDG No.: 115113

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher_

Concentration Units: ug/L

	Initial	Calibration	n.	Continuing Calibration					П
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	и
Lead	1000.0	991.70	99.2	400.0	400.30	100.1	404.	50 101.1	P

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	STL BURLINGTON		c	ontract: 2	6000		 	- <u></u>
Lab Code:	STLVT C	ase No.:	BIOASSAY	SAS No.:		SDG No.:	115113	
Initial Ca	libration Source:	Inorg	anic Ventur	es/Fisher				
Continuing	Calibration Sour	se: SP	EX/Fisher		·			
			Concentr	ation Unit	s: ug/L			

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	STL BURLINGTON	C	ontract: 26000		
Lab Code:	STLVT Case	No.: BIOASSAY	SAS No.:	SDG No.:	115113
Initial Cal	libration Source:	Inorganic Venture	es/Fisher		
Continuing	Calibration Source:	SPEX/Fisher			

Concentration Units: ug/L

	Initial	Calibration			Continuing	Calibra	ation		
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	,
Arsenic	250.0	263.30	105.3	100.0	103.30	103.3	98.82	98.8	Ī
Barium	500.0	485.90	97.2	200.0	199.30	99.6	199.00	99.5	$\overline{\mathbf{L}}$
Cadmium	500.0	480.30	96.1	100.0	97.50	97.5	96.24	96.2	L
Chromium	500.0	503.30	100.7	200.0	200.50	100.2	200.00	100.0	
Selenium	250.0	257.60	103.0	100.0	101.50	101.5	100.10	100.1	Ĺ
Silver	500.0	483.50	96.7	100.0	103.20	103.2	101.70	101.7	Ū
Zinc	500.0	481.70	96.3	200.0	190.30	95.2	192.10	96.0	Г

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name: _	STL BURLINGTON	Contract:	26000	
Lab	Code:	STLVT Case	No.: BIOASSAY SAS No.	: SDG No.:	115113
Init	ial Cal	ibration Source:	Inorganic Ventures/Fishe	r	
Cont	tinuing	Calibration Source:	SPEX/Fisher		

Concentration Units: ug/L

	Initi	al Calibrati	on		Continuing	Calibra	ation		l
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	l
Arsenic				100.0	101.20	101.2	102.3	0 102.3	î
Barium				200.0	202.00	101.0	198.4	0 99.2	Ī
Cadmium	J			100.0	96.33	96.3	95.0	7 95.1	ī
Chromium				200.0	203.70	101.8	201.4	0 100.7	Ī
Selenium				100.0	102.90	102.9	107.5	0 107.5	ī
Silver	Ī			100.0	102.50	102.5	102.6	0 102.6	ī
Zinc				200.0	195.90	98.0	193.0	96.5	Ī

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	STL BURLINGTON	Contract: 26000	
Lab Code:	STLVT Case	No.: BIOASSAY SAS No.:	SDG No.: 115113
Initial Cal	libration Source:	Inorganic Ventures/Fisher	,
Continuing	Calibration Source:	SPEX/Fisher	
		Concentration Units: ug/L	

	Initial	Calibratio	n	,	Continuing	g Calibre	tion		
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Mercury	3.0	3.04	101.3	5.0	5.04	100.8	5.	01 100.2	CV

⁽¹⁾ Control Limits: Nercury 80-120; Other Metals 90-110; Cyanide 85-115

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	STL BURLINGTOR			c	ontract: 2	6000	·	
Lab Code:	STLVT	Case N	₩o.;	BIOASSAY	SAS No.:		SDG No.:	115113
Initial Cal	ibration Source:	Ţ	norge	nic Ventur	es/Fisher			
Continuing	Calibration Sour	C0:	SPI	X/Fisher_				
					**			

Concentration Units: ug/L

	Initial	Calibratio	on		Continuing	Calibra	tion		
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	M
Mercury	3.0	2.98	99.3	5.0	5.01	100.2	5.	00 100.0	cv

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name:	STL BURLINGTON	 	_Contract:	26000			
Lab	Code:	STLVT Case	No.: BIOASSA	SAS No.	:	SDG No.:	115113	
Ini	tial Cal	ibration Source:	Inorganic Vent	ures/Fishe	r			
Con	tinuing	Calibration Source:	SPEX/Fisher					
								

Concentration Units: ug/L

	Initi	Initial Calibration			Continuing Calibration					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м	
Mercury				5.0	5.03	100.6			cv	

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2B-IN

CRDL STANDARD FOR AA AND ICP

Contract: 26000

Lab Code: STLVT Case	No.: BIOASSAY SAS No.:	SDG No.:	115113
AA CRDL Standard Source:		-	
ICP CRDL Standard Source:	Inorganic Ventures		
	Concentration U	nits: ug/L	
		CRDL Standard	for ICP
1		Initial	Final

٩R

True

10.0

Found %R

11.11 111.1

Found

₹R

Control Limits: no limits have been established by EPA at this time

Found

ab Name: STL BURLINGTON

Analyte

Lead

True

2B-IN

CRDL STANDARD FOR AA AND ICP

Lab Name:	STL BURLINGTON	Contract: 26000		
Lab Code:	STLVT Case	No.: BIOASSAY SAS No.:	SDG No.:	115113
AA CRDL Stan	ndard Source:			
ICP CRDL Sta	andard Source:	Inorganic Ventures		
		Concentration Units: ug/L		

	1			- 11	CRDL Sta	ndard f	or ICP	
				In	itial		Fina	1
Analyte	True	Found	%R	True	Found	₹R	Found	₹R
Arsenic				10.0	11.86	118.6		1
Barium				200.0	198.20	99.1		
Cadmium				5.0	6.21	124.2	_	
Chromium				10.0	10.34	103.4		
Selenium		Ì		35.0	36.53	104.4		
Silver				10.0	12.01	120.1		
Zinc				20.0	16.38	81.9	····	

Control Limits: no limits have been established by EPA at this time

3

Lab Name: STL BUR	LINGTON				Contra	ct:	26000				
Lab Code: STLVT	Case	No.:	BIOASSA	<u>r_</u>	SAS No.:		s	DG No	o.: <u>115113</u>		
Preparation Blank			-	OIL or me		MG/	KG	_			
	Initial Calib. Blank			Cor	ntinuing Cal Blank (ug,		ion		Preparation Blank		i
Analyte	(ug/L)	С	1	С	2	С	3	С	j	c	M
Lead	2.4	В	2.0	ט	2.0	ן ס	2.0	Ū	0.338	В	P

3

Lab Name:	STL BURLINGT	ON			Conti	ract:	26000				
Lab Code:	STLVT	Case No.:	BIOASS	BAY	SAS No.:			SDG No	o.: <u>115113</u>		
Preparation	n Blank Matrix	(soil/wate	r):	WATER							
Preparation	n Blank Concen	tration Uni	ts (ug/I	or mg	/kg):	UG/I	<u> </u>				
	Init: Cal: Blan	ib. nk			inuing C		ion		Preparation Blank		
Ana	lyte (ug,	C C	1	C	2	_ c	3	_C		С	×
Lead			2.	الآاه		1 1				I	P

3

Lab Name:	STL BURLINGTO	N		Contra	ct: 26000		<u></u>
Lab Code:	STLVT	Case No.:	BIOASSAY	SAS No.:		SDG No.:	115113
Preparation	n Blank Matrix	(soil/water	e): SOIL				
Preparation	n Blank Concent	ration Unit	s (ug/L or mg,	/kg) :	MG/KG		

	Initial Calib. Blank		Continuing Calibration Blank (ug/L)						Preparation Blank	
Analyte (ug/L)			1	C	2	2 C		C	c	M
Arsenic	4.7	Ū	4.7	ן ס ן	4.7	ן טן	4.7	Ū	0.470 U	P
Barium	5.4	Ū	5.4	U	5.4	וס	5.4	Ū	0.540 U	P
Cadmium	0.7	В	0.8	BI	0.4	ט	0.4	Ū	0.040 B	P
Chromium	1.3	Ū	1.3	U	1.3	ט	1.3	Ū	0.130 U	P
Selenium	6.0	В	4.8	ס	4.8	U	4.8	ਹ	0.480 U	P
Silver	2.0	Ū	2.0	ס	2.0	וסן	2.0	Ū	0.200 U	P
Zinc	-4.3	В	-5.2	B	-3.2	В	-3.8	В	0.266 B	P

3

Lab Name:	STL BURLINGTON	Contract: 26000
Lab Code:	STLVT Case No.: BIOASSAY SAS	No.: SDG No.: 115113
Preparatio	n Blank Matrix (soil/water): WATER	
Preparatio	n Blank Concentration Units (ug/L or mg/kg)	: UG/L
}		

Analyte	Initial Calib. Blank		Continuing Calibration Blank (ug/L)					Preparation Blank			
Analyte (ug/L)			1	C	2	c	3	C		C	M
Arsenic			4.7	וסו		TI				J	P
Barium			5.4	וסן		il				1	P
Cadmium			0.4	ס						Ī	P
Chromium			1.3	101				T		<u> </u>	P
Selenium			4.8	ס						Ī	P
Silver			2.0	U				1		i	P
Zinc	1	11	-4.8	B]	P

3

Lab Name: STL BU	RLINGTON		Contract:	26000			
Lab Code: STLVT	Case No.	: BIOASSAY	SAS No.:		SDG No	.: 115113	
Preparation Blank Preparation Blank			/kg): MG/	RG			
	Initial Calib. Blank		inuing Calibrat Blank (ug/L)	ion		Preparation Blank	
Analyte	(ug/L) C	1 C	2 C	3	c	С	M
Mercury	0.1 0	0.1 0	0.1 0			0.017 U	CV

3

BLANKS

Lab Name: STL BURLINGTON Contract: 26000 Lab Code: STLVT Case No.: BIOASSAY SAS No.: SDG No.: 115113 Preparation Blank Matrix (soil/water): SOIL Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG Initial Continuing Calibration Calib. Preparation Blank (ug/L) Blank Blank (ug/L)Analyte 1 3 M C C C C 0.10 0.1|0 0.1 0 0.1 0 CV В Mercury 0.022

4

ICP INTERFERENCE CHECK SAMPLE

Lab Name: STL BU	RLINGTON	Contract:	26000			
Lab Code: STLVT	Case No.: BIOASSAY	SAS No.:		SDG No.:	115113	
ICP ID Number: TO	JA ICAP 6		ICS Source:	: Inorga:	nic Ventur	0.8
	Concen	tration Units:	ug/L			
	True	Initia	l Found	F	inal Found	
Analyte	Sol.A Sol.AB	Sol.A	Sol.AB %R	Sol.A	Sol.AB	%R
Lead	0 46	-9	43.1 93.7			

4

ICP INTERFERENCE CHECK SAMPLE

Lab	Name:	STL BURI	INGTON		Contract:	26000			
Lab	Code:	STLVT	Case No.:	BIOASSAY	SAS No.:		SDG No.:	115113	
ICP	ID Numi	ber: <u>TJA</u>	ICAP 6			ICS Source:	Inorgan	ic Ventures	
				Concer	tration Units:	ug/L			

	Tr	u e	Ini	ial Found	Final Found			
Analyte	Sol.A	Sol.AB	Sol.A	Sol.AB	₹R	Sol.A	Sol.AB	%R
Arsenic	0	102	3	103.4	101.4			
Barium	0	506	8	513.2	101.4			
Cadmium	0	937	-7	950.9	101.5			
Chromium	0	500	2	512.7	102.5			·
Selenium	0	41	-9	41.1	100.2			
Silver	0	205	-1	209.4	102.1			
Zinc	0	937	-14	952.5	101.7			

5A

SPIKE SAMPLE RECOVERY

SAMPLE NO.

PT-REPS	

Lab Name: STL BURLINGTON Contract: 26000

Lab Code: STLVT Case No.: BIOASSAY SAS No.: SDG No.: 115113

Matrix (soil/water): TISSUE Level (low/med): LOW

% Solids for Sample: 100.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	C	Spike Added (SA)	₹R	Q	м
Arsenic	80 - 120	3.3454		0.3534	ס	3.08	108.6		P
Barium	80 - 120	158.5385	Ī	5.8647	В	153.85	99.2		P
Cadmium	80 - 120	4.7054	Ī	0.9316		3.85	98.0		P
Chromium	80 - 120	17.2769	Ī	1.2789		15.38	104.0		P
Lead	80 - 120	1.7754		0.2704	В	1.54	97.7		P
Selenium	80 - 120	4.3377	Ī	0.4457	В	3.85	101.1	_	₽
Silver	80 - 120	3.8562	Ť	0.1504	σ	3.85	100.2		P
Zinc	80 - 120	57.7923		19.8421		38.46	98.7		P

Comments:			
,	 	 	

6

DUPLICATES

SAMPLE NO.
PT-REFD

17.9160

10.2

							PT-	refd		
L	ab Name: STL BUT	RLINGTON	Contract:	260	00			·		
L	ab Code: STLVT	Case No.:	BIOASSAY SAS N	0.:		SDG No.	<u> 1</u>	15113		
	atrix (soil/water): Solids for Sample:		Level () % Solids for	•	-	0.0				_
		Concentration	n Units (ug/L or mg/kg	g dry	y weight):	MG/	KG	·		
	Analyte	Control Limit	Sample (S)	C	Duplicate (D)	С	RPD	Q	м
	Arsenic		0.3534	ס		0.3588	ס			P
	Barium		5.8647	В		5.2992	В	10.1		P
	Cadmium	0.4	0.9316			0.8817		5.5		P
	Chromium	0.8	1.2789			1.2023		6.2		P
	Lead		0.2704	В		0.2344	В	14.3		P
	Selenium		0.4457	В		0.4762	В	6.6		P
	Silver		0.1504	ט		0.1527	U			₽

19.8421

Zinc

7 LABORATORY CONTROL SAMPLE

Lab Name:	STL BURLING	TON		Contract:	26000		
Lab Code:	STLVT	Case No.:	BIOASSAY	SAS No.:		SDG No.:	115113

Solid LCS Source: ERA lot249/USEPA 0996/ERA lot0899

Aqueous LCS Source:

	ydneon	s (ug/L)			Solid (mg/kg)		
Analyte	True	Found	₹R	True	Found C	Limita	1	%R
Arsenic	1		1 1	24.0	25.0	19.2	28.8	104.2
Barium	1		1	200.0	202.4	160.0	240.0	101.2
Cadmium	1			25.0	25.1	20.0	30.0	100.4
Chromium				20.0	21.3	16.0	24.0	106.5
Lead	1			22.0	22.5	17.6	26.4	102.3
Selenium				21.0	24.6	16.8	25.2	117.1
Silver	1			25.0	25.2	20.0	30.0	100.8
Zinc				50.0	51.3	40.0	60.0	102.6

7 LABORATORY CONTROL SAMPLE

Lab Name	STL BURL	Ington			_ Contract:	26000			
Lab Code	STLVT	Case N	o.: <u>B</u>	IOASSAY	SAS No.:		SDG	No.: 1151	.13
Solid LC	Source:	ERA lot249	/USRPA	0996/ERA	lot0899				
Aqueous :	LCS Source:								
		Aqueous	(ug/L)			Solid	l (mg/	/kg)	
Analyt	:e	True	Found	%R	True	Found	С	Limits	%R
Mercu	ry				0.1	0.3	III	0.1	0.1 100.0

7

LABORATORY CONTROL SAMPLE

La	b Name:	STL BURLI	NGTON			Contract:	26000			
La	b Code:	STLVT	Case	No.: BIOA	SSAY	SAS No.: _		SDG No	.: <u>115</u> 1	L3
So.	lid LCS	Source: 1	BRA lot24	9/USEPA 09	96/BRA	lot0899				
ДŢ	ueous LC	S Source:								
			Aqueous	(ug/L)			Solid	(mg/kg)	•	
	Analyte		True	Found	%R	True	Found	c	Limita	%R
Ĭ	Mercur	y	1			0.1	0.1	1	0.1	0.1 100.0

9 ICP SERIAL DILUTIONS

SAMPLE NO.	
PT-REFL	

Lab Name:	STL BURLIN	gton	Contract:	26000
Lab Code:	COT. UT	Case No . RTOAGGAV	SAS No.	SDG No · 115113

Lab Code: STLVT Case No.: BIOASSAY SAS No.: SDG No.: 115113

Matrix (soil/water): TISSUE Level (low/med): LOW

Concentration Units: ug/L

	Initial Sample Result (I)			Serial Dilution Result (S)			% Differ- ence		
Analyte		C	\parallel			C]]	2	N
Arsenic	4.70	Ū	Ħ		23.50	ס			P
Barium	78.00	В	Ħ		74.84	В	4.1		P
Cadmium	12.39	Ī	ΪĨ		11.86	В	4.3		P
Chromium	17.01		11		13.26	В	22.0		P
Lead	3.60	В	II		10.00	Ū	100.0	Ì	P
Selenium	5.93	В	II		25.34	В	327.3		P
Silver	2.00	Ū	11		10.00	ਹ			P
Zinc	263.90		II		297.50		12.7	B	P

10

INSTRUMENT DETECTION LIMITS (QUARTERLY)

b Name:	STL BURLINGT	ON		Contract	: 26000			
Lab Code:	STLVT	Case No.: BIC	YARRAO	SAS No.:		SDG	No.	: 115113
ICP ID Numb	er:			Date:	07/01/06			
Flame AA ID		eman Hydra	.AA					
		Analyte	Wave- length (nm)	Back- ground	CRDL (ug/L)	IDL (ug/L)	M	
		Mercury	253.70		0.2	0.1	CV	

Comments:

10 INSTRUMENT DETECTION LIMITS (QUARTERLY)

Name: STL	BURLINGTON	Contract:	26000		
Lab Code: STLV	T Case No.: BIOASSAY	SAS No.:		SDG No.:	115113
ICP ID Number:	TJA ICAP 6	Date:	07/01/06		
Flame AA ID Numbe	or:				
Furnace AA ID Nu	mber:				

Analyte	Wave- length (nm)	Back- ground	CRDL (ug/L)	IDL (ug/L)	м
Arsenic	189.042		10	4.7	P
Barium	493.409		200	5.4	P
Cadmium	226.502		5	0.4	P
Chromium	267.716		10	1.3	P
Lead	220.353		10	2.0	P
Selenium	196.026		35	4.8	P
Silver	328.068		10	2.0	P
Zinc	206.200		20	1.9	P

Comments:

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: STL BURLINGTON Contract: 26000

Lab Code: STLVT Case No.: BIOASSAY SAS No.: SDG No.: 115113

ICP ID Number: TJA ICAP 6 Date: 01/27/06

	Wave- length	Interelement Correction Factors for:					
Analyte	(1772)	Al	Ca	Fe	Mg	Ag	
Aluminum	308.215	0.0000000	0.000000	0.0002800	0.0002100	0.0000000	
Antimony	206.838	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Arsenic	189.042	0.0000000	0.000000	0.000000	0.0000000	0.0000000	
Barium	493.409	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	
Beryllium	313.042	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	
Boron	249.678	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
Cadmium	226.502	0.0000000	0.0000000	0.0000380	0.0000000	0.0000000	
Calcium	317.933	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	
Chromium	267.716	0.0000000	0.000000	0.0000050	0.0000000	0.0000000	
Cobalt	228.616	0.0000000	0.000000	0.0000000	0.0000000	0.000000	
Copper	324.754	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	
Iron	271.441	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
Lead	220.353	-0.0001890	0.000000	0.0000950	0.0000120	0.0000000	
Magnesium	279.079	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	
Manganese	257.610	0.0000000	0.000000	0.0000000	0.0000220	0.0000000	
Molybdenum	202.030	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	
Nickel	231.604	0.0000000	0.000000	0.0000530	0.0000000	0.0000000	
Phosphorus	178.287	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
Potassium	766.491	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	
Selenium	196.026	0.0000000	0.000000	-0.0005680	0.0000000	0.0000000	
Silver	328.068	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	
Sodium	330.232	0.000000	0.0000000	0.0000000	0.0000000	0.0000000	
Strontium	421.552	0.0000000	0.0000080	0.0000000	0.0000000	0.0000000	
Thallium	190.864	0.0000000	0.0000000	0.0000120	0.0000000	0.0000000	
Tin	189.989	0.0000000	0.000000	-0.0000030	0.0000000	0.0000000	
Titanium	334.941	0.0000000	0.0000000	0.0000000	0.0000281	0.0000000	
Vanadium	292.402	0.000000	0.000000	0.0000000	0.0000000	0.0000000	
Zinc	206.200	0.0000000	0.0000000	0.0000230	0.0000000	0.0000000	

Comments:	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name:	STL BURLINGTON	Contract:	26000

Lab Code: STLVT Case No.: BIOASSAY SAS No.: SDG No.: 115113

ICP ID Number: TJA ICAP 6 Date: 01/27/06

	Wave-	Ţ	Interelement	Correction F	actors for:	
lmalret -	length					
Analyte	(nm)	As	В	Ве	Cđ	Co
Aluminum	308.215	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Antimony	206.838	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Arsenic	189.042	0.0000000	0.000000	0.000000	0.0000000	0.000000
Barium	493.409	0.000000	0.000000	0.0000000	0.0000000	0.000000
Beryllium	313.042	0.0000000	0.000000	0.000000	0.0000000	0.000000
Boron	249.678	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Cadmium	226.502	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Calcium	317.933	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Chromium	267.716	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Cobalt	228.616	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Copper	324.754	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Iron	271.441	0.0000000	0.000000	0.0000000	0.0000000	0.0150000
Lead	220.353	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Magnesium	279.079	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Manganese	257.610	0.000000	0.0000000	0.0000000	0.0000000	0.0000000
Molybdenum	202.030	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Nickel	231.604	0.0000000	0.0000000	0.0000000	0.0000000	-0.0015000
Phosphorus	178.287	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Potassium	766.491	0.000000	0.0000000	0.0000000	0.0000000	0.0000000
Selenium	196.026	0.0000000	0.0000000	0.0000000	0.0000000	-0.0002400
Silver	328.068	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Sodium	330.232	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Strontium	421.552	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Thallium	190.864	0.0000000	0.0000000	0.0000000	0.0000000	0.0021000
Tin	189.989	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Titanium	334.941	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Vanadium	292.402	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Zinc	206.200	0.0000000	0.0000000	0.0000000}	0.0000000	0.0000000

Comments:	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: STL BURLINGTON Contract: 26000

Lab Code: STLVT Case No.: BIOASSAY SAS No.: SDG No.: 115113

ICP ID Number: TJA ICAP 6 Date: 01/27/06

	Wave- length		Interelement	: Correction F	actors for:	
Analyte	(nm)	Cr	Cu	Mn	Mo	Na
Aluminum	308.215	0.0000000	0.000000	0.0000000	0.0011560	0.0000000
Antimony	206.838	-0.0059900	0.0000000	0.0000000	0.0000000	0.0000000
Arsenic	189.042	-0.0000190	0.0000000	0.0000000	0.0002340	0.0000000
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Beryllium	313.042	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Boron	249.678	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cadmium	226.502	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Calcium	317.933	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Chromium	267.716	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Cobalt	228.616	0.0000000	0.0000000	0.0000000	0.0009490	0.000000
Copper	324.754	0.0000000	0.0000000	0.0000000	0.0002600	0.000000
Iron	271.441	0.0000000	0.000000	0.0000000	0.0038000	0.000000
Lead	220.353	0.0000000	0.000000	0.0000000	0.0019000	0.000000
Magnesium	279.079	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Molybdenum	202.030	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Nickel	231.604	0.0000000	0.0000000	0.000000	0.0000000	0.000000
Phosphorus	178.287	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Potassium	766.491	0.0000000	0.0000000	0.000000	0.0000000	0.000000
Selenium	196.026	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Silver	328.068	0.0000000	0.0000000	0.0000000	0.0005280	0.000000
Sodium	330.232	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Strontium	421.552	0.0000000	0.0000000	0.000000	0.0000000	0.000000
Thallium	190.864	0.0002540	0.0000000	0.0014400	0.0035000	0.000000
Tin	189.989	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Titanium	334.941	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Vanadium	292.402	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Zinc	206.200	0.0000860	0.0000000	0.0000000	0.0000000	0.000000

Comments:

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name:	STL BURLINGTON			Contract:	26000
Lab Code:	STLVT	Case No.:	BIOASSAY	SAS No.:	SDG No.: 115113

ICP ID Number: TJA ICAP 6 Date: 01/27/06

	Wave- length		Interelement	Correction Fa	actors for:	
Analyte	(nm)	Ni	Pb	P	Sb	Se
Aluminum	308.215	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Antimony	206.838	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Arsenic	189.042	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Beryllium	313.042	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Boron	249.678	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Cadmium	226.502	0.0000870	0.0000000	0.0000000	0.0000000	0.000000
Calcium	317.933	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Chromium	267.716	0.0001100	0.0000000	0.0000000	0.0000000	0.0000000
Cobalt	228.616	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Copper	324.754	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Iron	271.441	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Lead	220.353	0.0005700	0.0000000	0.0000000	0.0000000	0.000000
Magnesium	279.079	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Molybdenum	202.030	0.000000	0.0000000	0.0000000	0.0000000	0.000000
Nickel	231.604	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Phosphorus	178.287	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Potassium	766.491	0.000000	0.0000000	0.0000000	0.0000000	0.000000
Selenium	196.026	0.000000	0.0000000	0.0000000	0.0000000	0.0000000
Silver	328.068	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Sodium	330.232	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Strontium	421.552	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Thallium	190.864	0.000000	-0.0003200	0.0000000	0.0000000	0.0000000
Tin	189.989	0.000000	0.000000	0.0000000	0.0000000	0.000000
Titanium	334.941	0.000000	0.0000000	0.0000000	0.0000000	0.0000000
Vanadium	292.402	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Zinc	206.200	0.0000000	0.0002200	0.0000000	0.0000000	0.0000000

Comments:	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name:	STL BURLINGTON			Contract:	26000		
Lab Code:	STLVT	Case No.:	BIOASSAY	SAS No.:		SDG No.:	115113

ICP ID Number: TJA ICAP 6 Date: 01/27/06

	Wave- length	Interelement Correction Factors for:					
Analyte	(nm)	si	Sn	Sr	Ti	Tl	
Aluminum	308.215	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Antimony	206.838	0.0000000	0.0000000	0.0000000	0.0034000	0.0000000	
Arsenic	189.042	0.0000000	0.0000000	0.000000	0.000000	0.000000	
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Beryllium	313.042	0.0000000	0.0000000	0.0000000	0.0000090	0.000000	
Boron	249.678	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
Cadmium	226.502	0.0000000	0.0000000	0.0000000	0.0002000	0.0000000	
Calcium	317.933	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
Chromium	267.716	0.0000000	0.0000000	0.0000000	0.0001340	0.0000000	
Cobalt	228.616	0.0000000	0.0000000	0.0000000	0.0021600	0.000000	
Copper	324.754	0.000000	0.0000000	0.0000000	0.0000000	0.0000000	
Iron	271.441	0.0000000	0.000000	0.0000000	0.0013800	0.000000	
Lead	220.353	0.0000000	0.0000000	0.0000000	0.0018000	0.000000	
Magnesium	279.079	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Molybdenum	202.030	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Nickel	231.604	0.000000	0.0000000	0.0000000	0.0000000	0.0000000	
Phosphorus	178.287	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
Potassium	766.491	0.000000	0.0000000	0.0000000	0.0000000	0.0000000	
Selenium	196.026	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
Silver	328.068	0.0000000	0.0000000	0.0000000	0.0002400	0.000000	
Sodium	330.232	0.0000000	0.0000000	0.0000000	0.1776000	0.0000000	
Strontium	421.552	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
Thallium	190.864	0.0000000	0.0000000	0.0000000	0.0002500	0.000000	
Tin	189.989	0.0000000	0.0000000	0.0000000	0.0004400	0.000000	
Titanium	334.941	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Vanadium	292.402	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	
Zinc	206.200	0.0000000	0.000000	0.0000000	0.0000000	0.000000	

Comments:	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	Name:	STL BURLINGTON	 		Contract:	26000		
Lab	Code:	STLVT	Case No.:	BIOASSAY	SAS No.:		SDG No.:	115113
TCD	TD Mum	her. TIN TOND 6			Date: 01	/27/06		

	Wave-	η					
length		Interelement Correction Factors for:					
Analyte	(nm)	v	Zn				
Aluminum	308.215	0.0265000	0.0000000				
Antimony	206.838	-0.0002800	0.0000000				
Arsenic	189.042	-0.0002800	0.0000000	!			
Barium	493.409	0.0000000	0.0000000				
Beryllium	313.042	0.0005800	0.0000000				
Boron	249.678	0.0000000	0.0000000				
Cadmium	226.502	0.0000000	0.0000000				
Calcium	317.933	0.0000000	0.0000000				
Chromium	267.716	-0.0001800	0.0000000				
Cobalt	228.616	0.0000000	0.0000000				
Copper	324.754	0.0000000	0.0000000				
Iron	271.441	0.0285500	0.0000000				
Lead	220.353	-0.0001140	0.0000000				
Magnesium	279.079	0.0000000	0.0000000				
Manganese	257.610	0.0000000	0.0000000				
Molybdenum	202.030	0.0000000	0.0000000				
Nickel	231.604	0.0000000	0.0000000				
Phosphorus	178.287	0.0000000	0.0146000				
Potassium	766.491	0.0000000	0.0000000				
Selenium	196.026	0.0000000	0.000000				
Silver	328.068	-0.0001200	0.0000000				
Sodium	330.232	-0.1508200	0.0582800				
Strontium	421.552	0.0000000	0.0000000				
Thallium	190.864	0.0016200	0.0000000				
Tin	189.989	0.0000000	0.0000000				
Titanium	334.941	0.000000	0.000000				
Vanadium	292.402	0.0000000	0.0000000				
Zinc	206.200	-0.0001200	0.0000000				

Comments:	

USEPA - CLP FURIVIS

12

ICP LINEAR RANGES (QUARTERLY)

Leliame:	STL BURLINGTO	N		Contract	26000			-
Lab Code:	STLVT	Case No.: P	YARRAOI	SAS No.:		SDG No.:	115113	-
ICP ID Num	ber: <u>TJA ICA</u> F	6		Date:	07/01/06	_		
		Analyte	Integ. Time (Sec.)		Concentration (ug/L)	M		

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	м	
Arsenic	10.00	5000.0	P	
Barium	10.00	10000.0	P	
Cadmium	10.00	5000.0	P	
Chromium	10.00	50000.0	P	
Lead	10.00	100000.0	P	
Selenium	10.00	5000.0	P	
Silver	10.00	2000.0	P	
Zinc	10.00	10000.0	P	

remments:

13

PREPARATION LOG

Lab Name:	STL BURLINGT	ON	Contract:	26000	
Lab Code:	STLVT	Case No.: BIOA	SSAY SAS No.:	SDG No.:	115113
Method: CV					

EPA Sample No.	Preparation Date	Initial Volume mL	Volume (mL)
EQBLK1	07/13/06	0.29	50.0
EQBLK2	07/13/06	0.30	50.0
LCSS071306A	07/13/06	0.50	50.0
PBS071306A	07/13/06	0.30	50.0

13

PREPARATION LOG

Lab Name:	STL BURLINGT	ON	Contract:	26000	
Lab Code:	STLVT	Case No.: BIOASSAY	SAS No.:	SDG No.:	115113

Method: CV

EPA Sample No.	Preparation Date	Initial Volume mL	Volume (mL)
BT-08	07/14/06	0.39	50.0
BT-SD001	07/14/06	0.36	50.0
BT-SD-022	07/14/06	0.36	50.0
BT-SD-037	07/14/06	0.35	50.0
BT-SD05	07/14/06	0.33	50.0
BT-SD06	07/14/06	0.38	50.0
BT-SD06-DUP	07/14/06	0.33	50.0
BT-SD13	07/14/06	0.36	50.0
BT-SD34	07/14/06	0.30	50.0
BT-SD36	07/14/06	0.32	50.0
LCSS071406B	07/14/06	0.50	50.0
PBS071406B	07/14/06	0.30	50.0
PT-16	07/14/06	0.32	50.0
PT-REF	07/14/06	0.32	50.0
PT-SD-31	07/14/06	0.33	50.0
PT-SD-31DUP	07/14/06	0.31	50.0

13

PREPARATION LOG

Lab Name:	STL BURLINGT	ron	Contract:	26000	
Lab Code:	STLVT	Case No.: BIOASSAY	SAS No.:	SDG No.:	115113

Method: P

EPA Sample No.	Preparation Date	Initial Volume	Volume (mL)
BT-08	07/14/06	1.28	100.0
BT-SD001	07/14/06	1.35	100.0
BT-SD-022	07/14/06	1.28	100.0
BT-SD-037	07/14/06	1.34	100.0
BT-SD05	07/14/06	1.31	100.0
BT-SD06	07/14/06	1.30	100.0
BT-SD06-DUP	07/14/06	1.33	100.0
BT-SD13	07/14/06	1.31	100.0
BT-SD34	07/14/06	1.28	100.0
BT-SD36	07/14/06	1.31	100.0
EQBLK1	07/14/06	1.00	100.0
EQBLK2	07/14/06	1.00	100.0
LCSS071406C	07/14/06	1.00	100.0
PBS071406C	07/14/06	1.00	100.0
PT-16	07/14/06	1.33	100.0
PT-REF	07/14/06	1.33	100.0
PT-REFD	07/14/06	1.31	100.0
PT-REFS	07/14/06	1.30	100.0
PT-SD-31	07/14/06	1.34	100.0
PT-SD-31DUP	07/14/06	1.32	100.0

14

ANALYSIS RUN LOG

Name: STL BURLING									Con																		_
Lab Code: STLVT		Cas	a No.:	BI	OA	SSI	Y		eas	No	.:							SDG	N	o.:	: 1	15	11	3_			
Instrument ID Number:	TJA	ICAP 6						. 1	set	hod	1:	_	P														
Start Date: 07/17/0	6							1	and	Da	.te		07	7/1	.7/	06			_								
EPA		<u> </u>		Τ										And	aly	te	s	_	-							_	_
Sample No.	D/F	Time	% R	A	s B	A	B	B	C	C	CR	CO		F	P	M G	N	G		K	S	A G	N A	T	v	Z	[
SO	1.00	1258				1						j			X	İ		Ť	ÌΤ	┢	İΤ	<u> </u>	İ	T		亡	t
S	1.00	1303		Г			<u> </u>		Ī							Г					Ī		Γ			\Box	Ĺ
S	1.00	1308									Π		Ī		X				Γ								Γ
S	1.00	1313		Γ			Ī												Ì					ī		\vdash	1
ICV	1.00	1319													X												Г
ICB	1.00	1325					Ī								X					<u> </u>				Î			Γ
ICSA	1.00	1331													X												
ICSAB	1.00	1336													X												Γ
CRI	1.00	1342													X												Γ
CCV	1.00	1348													X											\Box	
CCB	1.00	1353													X												Γ
ZZZZZZ	1.00	1359																	[Г
ZZZZZZ	1.00	1404																									Γ
ZZZZZ	1.00	1410																									
ZZZZZZ	1.00	1415																									
ZZZZZZ	1.00	1421																									
PBS071406C	1.00	1426													X												
LCSS071406C	1.00	1432										\Box			X												
BT-SD-037	1.00	1437													X												
BT-SD-022	1.00	1443				لـــا									X												
EQBLK1	1.00	1449													X												
CCV	1.00	1454							Ш						X				Ш								
CCB		1500													X					_]					Ш		
BT-SD05	1.00	1505													X							_					
BT-SD001	1.00	1511										Ц	_		X					\Box		_					
BT-SD06		1516					_		Ц				_		X									\Box			
BT-SD06-DUP	1.00	1522		Ш									_		X								╝				
BT-08	1.00	1527					[l	_				X			_								\Box	
BT-SD34	1.00	1533								ᆜ				_	X												
BT-SD13	1.00	1539					_	_							X												
BT-SD36		1544				لِــا	ļ		_[[[X]		_]							
PT-SD-31		1550		\perp		لِـــا	_		ļ	_ļ		إ_	_	_	X	_					_	\perp					
PT-SD-31DUP	1.00	1555						_	Ц	_]		_	_		X			_	Ц		\bot	[
ccv	1.00	1601		Ш		$oxed{oxed}$	{		Ц				_		X						\Box	\bot					
CCB	1.00	1606										$_{\perp}$			X								_]				
PT-16	1.00	1612		Ш					\sqcup	_]					X								Ī				_
PT-RBF	1.00	1617]	ļ			Ţ		Ī		Ī		Į	X		J		Ţ	Ī	Ī	Ţ	Ī	Ţ	ıŢ	П	i

5.00 1623

PT-REFL

14

ANALYSIS RUN LOG

Name: STL BURL	ington								on.	tra	ct:	•	26	00	0_		_						_				
Lab Code: STLVT	<u>.</u>	Cas	• No.:	BI	OA	SSA	Y		BAS	Мо	. :	_				_	S	DG	No	. :	1	15	11	3_			
Instrument ID Numbe	r: <u>TJA</u>	ICAP 6						N	ie t	hod	.:	_	P			_											
Start Date: 07/17	7/06							B	ind	Da	te:	•	07	<u>/1'</u>	7/0	06			_								
EPA									_				A	na	lyt	. 0.5	ļ								_		
Sample No.	D/F	Time	% R	A		A S	_	B		C A			C	- 1	1	M G		H G	I	K	S		ſ	T L	V	Z N	C N
PT-REFS	1.00	1629	i -	\vdash		-	-	_	-		寸	7	Ť	7	x	\dashv	7	寸	7							\Box	
PT-REFD	1.00	1634					1				Ī	Ì	T	T	x		٦	T	Ī							\Box	_
EQBLK2	1.00	1640										Ī		7	x		\neg							$\overline{}$	П		_
CCV	1.00	1645					Γ				Ī	Ī	T	T	x		Ī									\Box	Γ
CCR	1 00	1651		П						1		ī	T	_	v			一						$\overline{}$		П	_

14

ANALYSIS RUN LOG

	Name:	STL BURLINGTON			Contract:	26000	
_ '							
Lab	Code:	STLVT	Case No.:	BIOASSAY	SAS No.:	SDG No	o.: <u>115113</u>

Instrument ID Number: TJA ICAP 6 Method: P

Start Date: 07/	17/06							Į	and	Da	ıta	:	<u>07</u> /	118	3/0	6			_								
EPA													A	na	lyt	61	,										
Sample No.	D/F	Time	% R	A L	S B		B		C D	C	C R	0	C :	F R	P B			H G	N		8	A G	N A	T	V	Z N	
S0	1.00	2135				х	X		X		Х		T	7	Ì	7					X	X			П	X	T
S	1.00	2141												T	Ī	Ī											
S	1.00	2146				x							\Box								X						Г
S	1.00	2151					X		X		x			\Box	[X				X	Γ
ICV	1.00	2157				x	X		X		X				$\Box \mathbb{I}$						X	X				X	Γ
ICB	1.00	2203				X	X		X		x			Ī	$\exists I$	Ī					X	X			\Box	X	
ICSA	1.00	2208				X	X		X		x			T							X	X				X	Γ
ICSAB	1.00	2214				X	X		X		X		\Box	\top		1					X	X			П	X	Γ
CRI	1.00	2220				X	X		X		X		\Box	Ţ	T	7					X	X				X	
CCA	1.00	2225				X	X		X		x			I			Ī				X	X				X	Γ
CCB	1.00	2231				X	X		X		X			T	T						X	X				Х	Γ
PBS071406C	1.00	2236				X	X		X	_ [x			T	\mathbb{T}						X	X				X	
LCSS071406C	1.00	2242				X	X		X		X										X	X				X	
T-SD-037	1.00	2247				X	X		X		X										X	X				X	[]
T-SD-022	1.00	2253				Х	X		X		X				$\perp I$		\Box				X	X				X	
EQBLK1	1.00	2259				X	X		X		x				$oxed{\mathbb{I}}$		\prod				X	X				X	
BT-SD05	1.00	2304				X	X		X		X										X	X				X	
BT-SD001	1.00	2310				X	X		X		X	l			$-\mathbb{I}$						X	X				X	
BT-SD06	1.00	2315				Х	X		X		X										X	X				X	
BT-SD06-DUP	1.00	2321				X	X		X		X						\Box				X	X				X	
BT-08	1.00	2326				X	X		x		X					$oxed{J}$					X	X				X	
CCA	1.00	2332		Ш		X	X		X		х	\perp	\perp	\perp	\perp	1	\perp	\Box	\bot		X	X	[X	
CCB	1.00	2337				X	X		X		X	丄		\perp								X				X	
BT-SD34	1.00	2343				X	X		X		X	╝	\perp		\bot						X	X				X	
BT-SD13	1.00	2348				X	X		X		x										X	X				x	_
BT-SD36	1.00	2354				X	X		X		x										X	X			\Box	X	_
PT-SD-31	1.00	0000				X	х		X		X	\perp								\Box	X	X			\Box	X	
PT-SD-31DUP	1.00	0005				X	x		X		x								\prod		X	x				X	
PT-16	1.00	0011				X	х		X		X		\perp	1	\perp	\int					X	_				X	
PT-REF	1.00	0016				X	X		X		X	1									X	X			\Box	X	
PT-REFL	5.00	0022				X	X		X		X										X	X			\Box	X	_
EQBLK2	1.00	0027				X	x		x	\perp	x								\Box		X	X			\Box	X	_
PT-REFS	1.00	0033				x	X		X		X					\int	\prod		\int		x	X				X	
ccv	1.00	0038				X	X		X		X			\int		Ī	Ī				X	x				X	
CCB	1.00	0044				X	X		X		x										x	X			Ţ	X	_
PT-REFD	1.00	0050				Х	X		X		X	$\overline{\mathbb{I}}$		Ī		1				Ĵ	X	X			\Box	X	_
יכע	1.00	0055				Х	X		X		x	Ī				I					x	X				X	
₩ CCB	1.00	0101				X (X		X	1	x	Ī	T	T	\neg	T		Ī		\exists	x	x	Ī		\neg	X	

14

ANALYSIS RUN LOG

Name: STL BURLINGT	ON	Contract:	26000	
Lab Code: STLVT	Case No.: BIOASSAY	SAS No.:		SDG No.: 115113
Instrument ID Number:	TJA ICAP 6	Method:	<u> P</u>	

Start Date: 07/1	7/06							E	ind	De	te	:	<u>07</u>	/1	8/	06			_								
EPA			 	Γ								_		Ana	ly	ter	 B				-						
Sample No.	D/F	Time	% R	A L	S	A S	B	B	C D	C A		0					N	H G	N		S B	A G		T L	v		C
S0	1.00	1557																X								П	
S0.2	1.00	1559																х			Ì					\Box	
80.5	1.00	1601					<u> </u>											x			Γ					\sqcap	
Sl	1.00	1603															П	X									[
S5	1.00	1605		\Box			Ī											х			_						<u> </u>
S10	1.00	1607																X									
ICV	1.00	1609																x									_ i
ICB	1.00	1611																х						\neg			
CCV	1.00	1613														•		x						\neg			i
CCB	1.00	1615																x									
PBS071306A	1.00	1617								T								х									_ i
LCSS071306A	1.00	1620				i												x									<u> </u>
ROBLK1	1.00	1621																x							\neg		T i
ROBLK2	1.00	1623							<u> </u>	i	1							x	ī								— i
ZZZZZZ	1.00	1625											1					7	1	Ī				\neg		7	— i
ZZZZZZ	1.00	1627				Ī				_ 									i					T		\Box	_ i
ZZZZZZ	1.00	1629								Τĺ				T			\neg	_1					1	\neg	\neg		_
ZZZZZZ	1.00	1631			_ į				Ī	_i	$\neg \uparrow$			寸	\neg		7	1	1	_						\dashv	i
ZZZZZZ	1.00	1633								j				\exists			\dashv	\neg						_	\neg	\dashv	_j
CCV	1.00	1635			Ť	1			1	; 	i	i	ĺ	T	1			X	i					Ì	7	7	-i
CCB	1.00	1637			j	j				_	$\neg \uparrow$				\neg		\neg	x	7	ī				一	7		i

14

ANALYSIS RUN LOG

Name:	STL BURLINGTON		_ Contract:	26000		
Lab Code:	STLVT	Case No.: BIOASSAY	SAS No.:		SDG No.:	115113
7	t ID Mumber. I	namen Wedge 33	Wethod:	CTV7		

Start Date: 07/17/06 End Date: 07/17/06

an)	-, -,			$\overline{}$				_						-	1,,,4							-					_
EPA Sample	D/F	Time	% R		3	À	В	В	С	С	C	С	्		Lyı P	H		н	N	K	a	λ	N	т	v	Z	(
No.		ļ		L		8	Ā	B	D	À	R	0		B	В		N	G	I	•	E	G	Ä	L	Ì	N	1
S 0	1.00	1122																X									Γ
S0.2	1.00	1124					<u> </u>											X									
S0.5	1.00	1126																X									Γ
S1	1.00	1129																X									Γ
85	1.00	1130																X									Γ
S10	1.00	1133																X									Γ
ICV	1.00	1135										_						X							٦		
ICB	1.00	1137												Ì				X						一	1		
CCV	1.00	1139							Ì					1	1			X						\dashv	┪	\neg	
CCB	1.00	1141										Ī			TÌ		Ī	x							٦	\Box	
PBS071406B	1.00	1143												T				X						$\neg \uparrow$	╗		_
LCSS071406B	1.00	1145							i		Ī		1	T	1	1	1	x						1	7	\Box	_
BT-SD-037	1.00	1147										<u>j</u>		j	1	寸		x	\neg						寸		Γ
3T-SD-022	1.00	1149							i		T	j	T	寸	寸		7	x						7	7		_
ST-SD05	1.00	1151										٦į	\neg		7			х				_		寸	_	ㄱ	
BT-SD001	1.00	1153		П						1	_		7	T	7		\neg	x	7	_				\neg	7	╛	
BT-SD06	1.00	1155							Ī			_		7	7			x					_	一	┪		_
BT-SD06-DUP	1.00	1157							_i	T		Ī		7	7			X								\neg	_
BT-08	1.00	1159												T	7	╗		x	┪						1		_
CCV	1.00	1201							ī	1		_;	1	1	7	7		x					1	\neg	1	寸	_
CCB	1.00	1203							ij		_		7	7		\exists	7	x	7				-		7	\dashv	_
BT-SD34	1.00	1205				一		T		ᅱ		寸	_	1	7	┪		x	1		1		_	寸	7	7	_
BT-SD13	1.00	1207								一	7			7	7	7		x	7				_	┪	┪	_	_
BT-SD36	1.00	1209			1	1					1	1	寸	7	7	7	7	x	7	7	7			7	7	\dashv	
PT-SD-31	1.00	1211						\dashv	7	_	_	1	\dashv	寸	\dashv	7	\dashv	X	ᅥ	ᅥ	\dashv	\neg	ᅥ	\dashv	7	\dashv	_
PT-SD-31DUP	1.00	1213			_	_			7	┪	_	_	十	1	7	7	\dashv	x	7	<u>i</u>		_	4	+	+	\dashv	_
PT-16	1.00	1215	_						7		_	寸	寸	7	7	7	7	x	7	 	\dashv	_		+	7	+	_
PT-REF	1.00					_			7	ᅱ		寸	\dashv	\forall	\dashv	\dashv	\dashv	x	1	_ <u>'</u>	ᅥ	_	7	\dashv	\dashv	\dashv	_
ZZZZZZ		1219			一				7	\dashv	_	7	\dashv	7	7	7	7	7	7		-+	\dashv	-	+	\dashv	7	_
22222	1.00								一	一	_†		+	+	寸	7	\dashv	7	_	ᅥ	ᅥ	1	ᆉ	十	+	十	_
CCV	1.00	1223				ᅥ		\dashv		7	-1	_	_	+	\forall	+	\dashv	X	+		┪		-+	-+	+	十	_
ССВ		1225			-	_		\dashv	╌┼	ᆛ	╌┼	_+	-+	十	+	+	↤	x	-+			ᆛ	-+	+	+	ᆉ	_

ATTACHMENT D VEGETATION COMMUNITY STUDY

www.nre-inc.nct

Memorandum

To: Jeff Stofferahn, ENTACT & Associates

From: Matt Scharmm, NRC

Jon Gumtow, NRC

CC: Tom Girman, NRC

Re: Wetland Vegetation Community Assessment, Former American Zinc Plant Site,

Fairmont City, Illinois

Date: August 2, 2006

Natural Resources Consulting, Inc. (NRC), performed field evaluation of the wetland vegetation communities in the vicinity of the Former American Zinc facility in Fairmont City, Illinois. The evaluation was completed between June 28-30, 2006, and included collection of plant tissue samples for chemical analysis and completion of vegetation surveys and a Floristic Quality Assessment Index (FQAI) for the vegetation communities evaluated.

The purpose of the assessment was to provide quantitative data concerning the condition of hydrologically-connected (downstream) wetland vegetation communities of the Former American Zinc facility. This study was completed in support of a baseline Ecological Risk Assessment being prepared for the site by ENTACT & Associates LLC (ENTACT).

METHODS

NRC performed the field evaluation in accordance with the *Baseline Ecological Risk* Assessment Work Plan (M.T. Bosco & Associates, 2006) and the Support Sampling Plan for the Old American Zinc Plant Site (ENTACT, 2006). Sample data was collected in the Old Cahokia Creek wetland complex located north of the Former American Zinc facility. NRC collected vegetation data at two downstream wetland locations (the West Ditch Outfall and Rose Creek Outfall) and one Reference Area or background wetland location (located at the former Golf Course). The West Ditch Outfall, Rose Creek Outfall, and the Reference Area exist within the same wetland complex, however, the Reference Area appears to be hydrologically isolated from surface and groundwater influences of the West Ditch and Rose Creek outfalls, as well as the Former American Zinc site.

Plant Tissue Sampling

Plant tissue samples were collected to evaluate potential chemical uptake at the outfall locations. Two plant tissue samples were collected at the West Ditch Outfall wetland. One sample was located near the stormwater outfall on the south edge of the wetland complex,

and a second near the north edge of the area investigated for the vegetation community survey. Two plant tissue samples were collected at the Rose Creek Outfall wetland (one at each vegetation community survey plot location). One plant tissue sample was also collected from the Reference Area wetland location. A duplicate plant tissue sample was collected per requirements of the workplan.

Tissue samples were collected from herbaceous plants showing visual signs of environmental stress such as chlorosis, malformed leaves, and leaf necrosis. Approximately 50 to 60 grams of tissue material were collected at each sample location. Each location included a composite from three to five different plant species.

Tissue samples were collected using scissors, forceps, and clean nitrile gloves. Sample equipment was decontaminated using Alconox and a de-ionized water rinse between locations. The plant materials for each sample were washed with de-ionized water to remove dust or sediment deposits and dried. Samples were place in plastic Ziplock bags and stored in a cooler with ice until transfer of chain of custody to ENTACT on June 29, 2006.

Vegetation Community Sampling

Wetland vegetation communities were surveyed using procedures described in the U.S. Environmental Protection Agency guidance document Methods for Evaluating Wetland Condition #10 - Using Vegetation to Assess Environmental Conditions in Wetlands (USEPA 2002) and methods for conducting floristic quality assessments in Illinois (Taft and others 1997; Swink and Wilhelm 1994). The heterogeneous nature of the Old Cahokia Creek wetland complex and unknown disturbance histories of the survey areas precluded establishing sample locations with uniform plant community characteristics. Based on discussions with ENTACT staff, NRC selected sample locations with similar hydrologic regimes and similar topographic positions on the landscape within the wetland complex. Depositional environments downstream of the outfalls were selected to represent variations in disturbance regimes between the West Ditch Outfall, Rose Creek Outfall, and Reference Area. At the West Ditch Outfall and Rose Creek Outfall survey areas, the sampling locations encompassed areas of obvious disturbances and signs of environmental stress (chlorosis, stunted growth, leaf deformation and/or necrosis) to the dominant vegetation of the plant communities. The sampling areas were selected to represent semi-open to open herbaceous or shrub-scrub wetland community types characteristic of disturbed stormwater outfalls.

The vegetation communities were surveyed using a combination of the standard releve (Braun-Blanquet) and transect sampling methods. A minimum of one 100 m² (10m x 10m) releve plot was established for each survey area. At the West Ditch Outfall, a 70m baseline transect was established across the longitudinal axis of the depositional environment of the outfall, and three releve plots were taken at 5m, 45m, and 60m along the west side of the transect. At the Rose Creek Outfall, the releve plot was located at the termini of the Rose Creek channel about 250m north of Collinsville Road. At the Reference Location Area, the releve plot was located about 50m northwest of an existing Fairmount City storm sewer outfall.

Belt transects were also used at the Rose Creek Outfall and Reference Area to sample conditions within relatively discrete (narrow, smaller than 100 m² in size) plant communities associated with stormwater-influenced environments. At the Rose Creek Outfall, a 1m x 10m belt transect was established across a disturbed wet meadow immediately downstream of the Rose Creek channel. Signs of stormwater flow over the bank and sediment/debris

deposition were evident at this location. A 1m x 10m transect was established at the reference location along the axis of the stormwater discharge channel; upland grassland present on either side of the channel were not sampled.

Two NRC scientists completed an inventory of the plant species present within each releve plot and assigned appropriate coefficients of conservatism (CC) to each species for purposes of developing the FQAI. Individual CC values were taken from Taft and others (1997), which provide values that more adequately reflect species characteristics outside the Chicago Region. The density and percent cover for each doiminant species was also recorded for each releve. For woody and some larger herbaceous species, these measurements were taken directly from the 100 m² plots. However, to develop estimates for smaller or more abundant herbaceous plants (e.g., Amarathus retroflexus), one or more 1m x 1m nested quadrats were sampled in "average" conditions within each releve.

A FQAI for each sample location was developed using the formula:

Native Floristic Quality Index (FQI) = Mean C(\sqrt{N})

where Mean $C = \sum Coefficients$ of CC/N

CC = coefficients of conservatism for individual species

N=native species richness.

Total mean C and a total FQI score was also developed for each sample location using total species richness (native plus non-native species), where non-native species were assigned CC values of zero. Theses measure often better reflects the actual integrity of a site than simply using native species for the FQAI analysis (Taft and others 2006). The native species richness for each community was also calculated by dividing the number of native species by the total number species within each sample.

RESULTS

Results of the FQAI are summarized in the attached Tables 1a-1c (West Ditch Outfall), Tables 2a-2b (Rose Creek Outfall), and Tables 3a-3b (Reference Area). In general, all of the plant communities surveyed are dominated by disturbance tolerant or ruderal (weedy and adventive) species characteristic of highly altered natural environments.

Total FQI scores for the three releve plots at the West Ditch Outfall location ranged from 4.62 to 6.93, with slightly higher FQI scores closer to the stormwater outfall (possibly as a result of microenvironments created by frequent disturbances). Total mean C values ranged from 1.92 to 3.3. The survey area encompasses a rather broad depositional environment that is relatively species poor and in many areas dominated by only a few herbaceous species such as Amaranthus retroflexus and Leersia virginica and a sparse cover of Cephalanthus occidentalis. Overall, native species richness was lower in this community (66.7 to 76.9 percent) than other survey areas. Stressed vegetation (chlorosis, malformed growth) was evident throughout the community, but appeared contained within a relatively distinct line that may potentially correlate to the depositional environment of the stormwater outfall. Undisturbed hardwood swamp habitat dominated by mature Salix nigra and Fraxinus pennsylvanica borders the survey area on the east and west, with shrub-carr and shallow marsh habitat to the north.

Total FQI scores for the Rose Creek Outfall location ranged from 9.0 for the releve plot to 9.2 for the belt transect. Total mean C values ranged from 1.8 for the releve plot to 2.05 for the

belt transect. Overall native species richness was about 80% for the community. Vegetation at the belt transect survey location was predominantly a disturbed wet meadow, while the plant community within the releve plot appeared to be trending successionally from a wet meadow-sedge meadow to a hardwood swamp. Beaver activity was evident in the area of the releve plot, which could partially account for the disturbed, scrub-shrub vegetation. Both sample locations are highly disturbed by stormwater flow. Although Rose Creek was dry at the time of the survey, a significant amount of trash, coarse woody debris, and sediment deposition was evident at several locations within the stream channel. Virtually no vegetation was present within the channel, which was scoured to a depth of two to three feet below the surrounding landscape. This stream downcutting has likely altered the hydrology of adjacent wetlands such as the wet meadow sampled within the belt transect, allowing species more characteristic of drier grasslands to successfully invade the plant community. Stressed vegetation (chlorosis) was evident within both sampling locations, although more localized and generally restricted to the southwest corner of the releve plot (closest to the mouth of the stream channel).

Total FQI scores and total mean C values at the Reference Area were 5.00 and 1.67, with a native species richness of about 67 percent. In contrast, the Total FQI and native species richness for the plant community were higher for the releve plot in the Reference Area (13.06 and 88 percent, respectively). The mean C value for the Reference Area was also slightly higher than the other two survey locations (2.67). The Reference Area is part of a former golf course that has been restored to a large floodplain wetland complex consisting of emergent and wet meadow habitats. No obvious signs of vegetative stress were observed within the Reference Area.

LIMITATIONS

There are limitations to the use of FQAI analysis in this investigation for assessment of overall plant community aquatic health. First, although the environmental conditions of the three sites are generally similar, there is insufficient data to assess the frequency of hydroperiods or to quantify the magnitude of stormwater impacts within the survey areas. These disturbance factors, as well as upstream and adjacent sources of invasive species, can significantly affect the composition and structure of the plant communities. Therefore, it may be difficult to distinguish whether observed field observations are attributable to physical disturbances or from contaminated sediments. Secondly, it has generally been recognized that FQI, and to a lesser extent, mean C values are both area-sensitive metrics, with smaller sample areas generally yielding lower scores than more intense sampling or larger sample areas (Taft and others 2006). In addition, both species richness and FQI scores in Illinois wetlands have been shown to increase with sampling period, suggesting that repeated monitoring tends to yield higher scores than a single, discrete sampling event (Matthews and others 2005).

REFERENCES

ENTACT, 2006. Support Sampling Plan for the Old American Zinc Plant Site, Fairmont City, Illinois, Revision 2, 71 pp.

Matthews, J.W., P.A. Tessene, S.C. Wiesbrook, and B.W. Zercher. 2005. Effect of area and isolation on species richness and indices of floristic quality in Illinois, USA wetlands. Wetlands. 25:3 (607-615)

Swink, F. and G. Wilhelm. 1994. *Plants of the Chicago Region, 4th Edition*. Indianapolis: Indiana Academy of Science.

Taft, J.B., C. Hauser, and K. R. Robertson. 2006. Estimating floristic integrity in tallgrass prairie. Biological Conservation. 131:42-51.

Taft, J.B., G.S. Wilhelm, D.H. Ladd, and L.A. Masters. 1997. Floristic quality assessment for vegetation in Illinois: a method for assessing vegetation integrity. Erigenia. 15:3-95.

U.S. Environmental Protection Agency. 2002. *Methods for Evaluating Wetland Condition #10 - Using Vegetation to Assess Environmental Conditions in Wetlands*. Office of Water. EPA-822-R-02-202.

Vegetation Summary Tables

Table 1a. Inventory of Vascular flora within West Ditch Outfall Wetland Plot 1

Species Name	Common Name	WIC	C Value
Amaranthus retroflexus	redroot pigweed	FACU+	0
Cephalanthis occidentalis	buttonbush	OBL	9
Leersia virginica	white grass	FACW FACW	5
		Total C =	14
$FQI = Mean C \times SqRt N$		N =	3
FQI = Floristic Quality Index		Mean C =	4.7
N = Number of Native Species		FQI =	8.1
Total $N = Total \# of native and no$	on-native species	Total N =	3
		% Native Species	
		=	100.0

Table 1b. Inventory of Vascular Flora within West Ditch Outfall Plot 2

Species Name	Common Name	WIC	C Value
Amaranthus retroflexus	red root pigweed	FACU+	0
Carex lacustris	common lake sedge	OBL	6
Cephalanthis occidentalis	buttonbush	OBL	9
Salix nigra	black willow	OBL	4
		Total C =	19
$FQI = Mean C \times SqRt N$		N =	4
FQI = Floristic Quality Index		Mean C =	4.75
N = Number of Native Species		FQ1 =	9.5
Total N = Total # of native and non-native species		Total N =	4
	•	% Native Species	
		· =	100.0

Table 1c. Inventory of Vascular Flora within West Ditch Outfall Plot 3

Note: Plot 3 located closest to stormwater outfall from West Ditch

			C		
Species Name	Common Name	WIC	Value		
Agastache nepetoides	yellow giant hyssop	FACU	5		
Amaranthus retroflexus	red root pigweed	FACU+	0		
Ambrosia artemisiifolia	common radweed	FACU	0		
Aster pilosus	white old field aster	FACU+	ì		
Bidens frondosa	devil's beggars ticks	FACW	l		
Carex blanda	common wood sedge	FAC	3		
Carex lacustris	common lake sedge	OBL	6		
Cephalanthis occidentalis	buttonbush	OBL	9	FQI	
Daucus carota	Queen Anne's lace	UPL	*	including	
Erigeron annuus	annual fleabane	FAC-	0	adventive	
Rubus strigosus	Red raspberry	FACW-	3	/non- native	
Solidago canadensis	common goldenrod	FACU	1	species	
Stellaria media	Common chickweed	FACU	*	-	
		Total C =	29	Total C =	0
$FQI = Mean C \times SqRt N$		N =	11	N =	13
FQI = Floristic Quality Index		Mean C =	2.64	Mean C=	0.00
N = Number of Native Species		FQI ≈	8.7	FQI =	0.00
Total $N = Total # of native and if$	non-native species	Total N =	13		
		% Native Species			
		=	84.6		

8.78

Average FQI Score (for all 3 plots):

* Indicates introduced plants, which are excluded from floristic assessment

Table 2a. Inventory of vascular flora within Rose Creek Outfall Plot 1

Species Name	Common Name	WIC_	C Value		
Acer negundo	box elder	FACW-	0		
Agastache nepetoides	yellow giant hyssop	FACU	5		
Amaranthus retroflexus	redroot pigweed	FACU+	0		
Ambrosia trifida	giant ragweed	FAC+	0		
Aster lateriflorus	calico aster	FACW-	4		
Aster puniceus	bristly aster	OBL	8		
Bidens frondosa	devil's beggars ticks	FACW	1		
Carex blanda	woodland sedge	FAC	1		
Carex muskingumensis	muskingum sedge	OBL	8		
Commelina communis	asiatic dayflower	FAC	*		
Daucus carota	Queen Anne's lace	UPL	*		
Erigeron canadensis	horseweed	FAC-	0		
Fraxinus pennsylvanica	green ash	FACW	5		
Phragmites australis	Common reed	FACW+	1		
Sambucus canadensis	common elderberry	FACW-	l	FQI	
Solidago canadensis	common goldenrod	FACU	1	including	
Toxicodendron radicans	poison ivy	FAC+	2	adventives	
Tradenscantia ohiensis	Common spiderwort	FACU+	2	and non-	
Ulmus pumila	Siberian elm	UPL	*	natives	
Verhena urticifolia	Hairy white vervain	UPL_	5		
		Total C =	44	Total $C =$	0
$FQI = Mean C \times SqRt N$		N =	17	N (total) =	20
FQI = Floristic Quality					
Index		Mean C =	2.6	Mean C =	0
N = Number of Native		ro.	10.	FOI	0.00
Species		FQI =	10.7	FQI =	0.00
Total $N = \text{Total } \# \text{ of species}$	s (native + non-native)	Total N = % Native	20		

Species =

85.0

^{*} Indicates introduced plants, which are excluded from floristic assessment

Table 2b. Inventory of vascular flora within Rose Creek Outfall Plot 2

Note: Depositional environment most similar to West Ditch Outfall Plots 1 & 2 and Reference Plot

Species Name	Common Name	WIC	C Value
Acer negundo	box elder	FACW-	0
Amaranthus retroflexus	red root pigweed	FACU+	0
Ambrosia artemisiifolia	common ragweed	FACU	0
Ambrosia trifida	giant ragweed	FAC+	0
Aster lanceolatus	panicled aster purple-stemmed beggar-	OBL	3
Bidens connata	ticks	OBL	5
Bidens frondosa	devil's beggars ticks	FACW	i
Campensis radicans	trumpet creeper vine	FAC	*
Carex lacustris	common lake sedge	OBL	6
Catalpa speciosa	hardy catalpa	FACU	*
Commelina communis	asiatic dayflower	FAC	*
Cephalanthis occidentalis	buttonbush	OBL	9
Fraxinus pennsylvanica	green ash	FACW	5
aportea canadensis	wood nettle	FACW	3
vcopus americanus	American bungleweed	OBL	5
Phragmites australis	Common reed	FACW+	1
Phalaris arundinacea	reed canary grass	FACW+	*
Polygonum amphibium	water smartweed	OBL	4
Populus deltoides	eastern cottonwood	FAC+	2
Solidago canadensis	common goldenrod	FACU	1
Spartina pectinata	prairie cord grass	FACW+	4
Toxicodendron radicans	poison ivy	FAC+	2
ypha angustifolia	narrowleaf cattail	OBL	1
Ilmus pumila	Siberian elm	UPL	*
Salix nigra	black willow	OBL	5
		Total C =	57
$FQI = Mean C \times SqRt N$		N =	20

	rotal C =	57
$FQI = Mean C \times SqRt \times N$	N =	20
FQI = Floristic Quality Index	Mean C =	2.9
N = Number of Native Species	FQI =	12.7
Total $N = Total \# of species (native + non-native)$	Total $N =$	25
	% Native	
	Species =	80.0

^{*} Indicates introduced plants, which are excluded from floristic assessment

rQI
including
adventives
and nonnatives

Total C = 0
N (total) = 25
Mean C = 0
FQI = 0.00

Table 3a. Inventory of Vascular Flora within Belt Transect Immediately Downstream of Stormwater Outfall Location

Note: Plot location on landscape, hydrology, etc. compares most directly with West Ditch Outfall Plot #3

Species Name	Common Name	<u> </u>	C Value		
Acer saccharinum	silver maple	FACW	0	7	
Carduus nutans	nodding thistle	UPL	0		
Carex lacustris	common lake sedge	OBL	6	FOI	
Glechoma hederacea	creeping charlie	FACU	*	FQ1	
Leersia virginica	white grass	FACW	5	including adventive	
Lonicera maackii	bush honeysuckle	UPL	*	/non-	
Solidago canadensis	Common goldenrod	FACU	1	native	
Toxicodendron radicans	poison ivy	FAC+	2	species	
Vitis riparia	Riverbank grape	FACW-	2		
		Total C =	16	Total C =	0
$FQI = Mean C \times SqRt N$		N =	7	N =	9
FQI = Floristic Quality Index		Mean C =	2.3	Mean C=	0.00
N = Number of Native Species		FQI =	6.0	FQI =	0.00
Total N = Total # of species (nat	ive + non-native)	Total N =	9	-	
•		% Native Species			
		=	77.8		

^{*} Indicates introduced plants, which are excluded from floristic assessment

Table 3b. Inventory of Vacscular Flora within Reference Plot (similar hydrology and topography to West Ditch plots 2 & 3 and Rose Creek plots)

Species Name	Common Name	WIC	C Value
Acer saccharinum	silver maple	FACW	0
Ambrosia trifida	giant ragweed	FAC+	0
Aster lanceolatus	panicled aster	OBL	3
Carex lacustris	common lake sedge	OBL	6
Carex muskingumensis	muskingum sedge	OBL	8
Carex vulpinoidea	Fox sedge	OBL	2
Cephalanthis occidentalis	buttonbush	OBL	9
Cornus drummundii	rough-leaved dogwood	FAC	2
Calystegia sepium	hedge bindweed	FAC	1
Eleocharis sp.	a spikerush		**
Elymus virginicus	Virginia wild rye	FACW-	4
Erechites hieracifolia	Fireweed	FACU	2
Euonymous fortunei	wintercreeper	UPL	*
Fraxinus pennsylvanica	green ash	FACW	5
Hordium jubatum	squirrel-tail grass	FAC+	*
Leersia virginica	white grass	FACW	5
Polygonum pensylvanicum	Pennsylvania smartweed	FACW+	0

Table 3b. Inventory of Vacscular Flora within Reference Plot (cont.)

(similar hydrology and topography to West Ditch plots 2 & 3 and Rose Creek plots)

Species Name	Common Name	WIC	C Value
Solidago canadensis	Common goldenrod	FACU	1
Toxicodendron radicans	poison ivy	FAC+	2
Typha latifolia	common cattail	OBL	1
Ulmus americana	American elm	FACW-	3
Vitis riparia	Riverbank grape	FACW-	2
		C Total =	71
$FQI = Mean C \times SqRt N$		N =	22
FQI = Floristic Quality Index		Mean C =	3.23
N = Number of Native Species		FQI =	15.1
Total $N = \text{Total } \# \text{ of species (native}$	e + non-native)	Total N =	25

ncluding	
dventive	
/non-	
native	
species	
Γotal C =	0
N =	24
Mean C=	0.00
FO1 =	0.00

FQI

% Native Species =

88

^{*} Indicates introduced plants, which are excluded from floristic assessment

^{**}No fruits/seeds present to confirm ID; not used for FQI

Table 1a. Inventory of vascular flora within West Ditch Outfall Wetland Plot 1

Species Name	Common Name	WIC	C Value	Percent Cover (class)	Density (plants/m²)
Amaranthus retroflexus	redroot pigweed	FACU+	*	6	751.5 ^{-a}
Cephalanthis occidentalis	buttonbush	OBL	4	2	0.1
Leersia virginica	white grass	FACW	_ 4	33	50.75

Notes:

^a - Measured in four 1m*1m quadrats

·			FQI including adventive/non-native sp		
	Total C =	8	Total C =	8	
$FQI = Mean C \times SqRt N$	N =	2	Total N =	3	
FQI = Floristic Quality Index	Mean C =	4.0	Mean C=	2.67	
N = Number of Native Species	Native FQ1 =	5.7	FQI =	4.62	
Total N = Total # of native and non-native species	Total N =	3			
	% Native Species =	66.7			

Table 1b. Inventory of Vacscular Flora within West Ditch Outfall Plot 2

Species Name	Common Name	WIC	C Value	Percent Cover (class)	Density (plants/m²)
Amaranthus retroflexus	red root pigweed	FACU+	*	3	127 ^{-a}
Carex lacustris	common lake sedge	OBL	6	3	9.5 ^{-a}
Cephalanthis occidentalis	buttonbush	OBL	4	2	0.1
Salix nigra	black willow	OBL	3	1	0.1

Notes:

^a - Measured in three 1m*1m quadrats

	T-1.1.C. 12		FQI including a	idventive/non-native species
	Total C =	13	Total C =	13
$FQI = Mean C \times SqRt N$	N =	3	Total N =	4
FQI = Floristic Quality Index	Mean C =	4.3	Mean C=	3.3
N = Number of Native Species	Native FQ1 =	7.5	FQI =	6.5
Total $N = Total \# of native and non-native species$	Total N =	4		
	% Native Species =	75.0		

Table 1c. Inventory of Vacscular Flora within West Ditch Outfall Plot 3

Species Name	Common Name	WIC	C Value	Percent Cover (class)	Density (plants/m ²)
Agastache nepetoides	yellow giant hyssop	FACU	4	1	<0.1
Amaranthus retroflexus	red root pigweed	FACU+	*	3	0.7 ^{-a}
Ambrosia artemisiifolia	common ragweed	FACU	0	3	0.4 ^{-a}
Aster pilosus	white old field aster	FACU+	0	1	< 0.1
Bidens frondosa	devil's beggars ticks	FACW	1	3	0.4 ^{-a}
Carex blanda	common wood sedge	FAC	2	3	1.4
Carex lacustris	common lake sedge	OBL	6	3	1.6
Cephalanthis occidentalis	buttonbush	OBL	4	3	0.1
Daucus carota	Queen Anne's lace	UPL	*	1	<0.1
Erigeron annuus	annual fleabane	FAC-	1	1	0.1
Rubus strigosus	Red raspberry	FACW-	6	2	0.2
Solidago canadensis	common goldenrod	FACU	1	1	0.2
Stellaria media	Common chickweed	FACU	*	1	0.2

Notes:

Plot 3 located closest to stormwater outfall from West Ditch

Open canopy and low species diversity allowed direct count of many herbaceous species in 10m*10m plot

	•	_	FQI including	QI including adventive/non-native species			
	Total C ≈	25	Total C =	25			
$FQI = Mean C \times SqRt N$	N =	10	Total N =	13			
FQI = Floristic Quality Index	Mean C =	2.50	Mean C=	1.92			
N = Number of Native Species	Native FQ1 =	7.9	FQI =	6.93			
Total $N = \text{Total } \# \text{ of native and non-native species}$	Total N =	13	-				
	% Native Species =	76.9					

Average FQI Score (for all 3 plots):

7.02

a - Measured in one 1m*1m quadrat

Table 2a. Inventory of vascular flora within Rose Creek Outfall Plot 1 (belt transsect)

(scour/depotitional environment; similar to Reference Belt Transect and West Ditch Plot #3)

				Percent Cover	Density	
Species Name	Common Name	WIC	C Value	(class)	(plants/m²)	
Acer negundo			1	1	0.1	
Agastache nepetoides	yellow giant hyssop	FACU	4	1	0.2	
Amaranthus retroflexus	redroot pigweed	FACU+	*	3	34.6	
Ambrosia trifida	giant ragweed	FAC+	0	3	4.3	
Aster lateriflorus	calico aster	FACW-	2	2	0.8	
Aster puniceus	bristly aster	OBL	7	1	0.9	
Bidens frondosa	devil's beggars ticks	FACW	1	2	2.2	
Carex blanda	woodland sedge	FAC	2	4	28.8	
Carex muskingumensis	muskingum sedge	OBL	6	2	4.2	
Commelina communis	asiatic dayflower	FAC	*	1	0.1	
Conyza canadensis	horseweed	FAC-	0	1	0.4	
Daucus carota	Queen Anne's lace	UPL	*	3	11.9	
Fraxinus pennsylvanica	green ash	FACW	5	1	0.1	
Phragmites australis	Common reed	FACW+	1	2	2.0	
Sambucus canadensis	common elderberry	FACW-	2	3	1.8	
Solidago canadensis	common goldenrod	FACU	1	3	13.6	
Toxicodendron radicans	poison ivy	FAC+	1	1	0.7	
Tradenscantia ohiensis	Common spiderwort	FACU+	3	Ì	0.8	
Ulmus pumila	Siberian elm	UPL	*	1	0.3	
Verbena urticifolia	Hairy white vervain	UPL	5	l	0.2	

Cover Classes:

 $1 = 0-1\%; \ 2 = 1-5\%; \ 3 = 5-25\%; \ 4 = >25-50\%; \ 5 = 50-75\%; \ 6 = >75-95\%; \ 7 = >95-100\%$

	Total C =	41	Total C =	41
$FQI = Mean C \times SqRt N$	N =	16	Total $N = $	20
FQI = Floristic Quality Index	Mean C =	2.6	Mean C =	2.05
N = Number of Native Species	Native FQI =	10.3	FQI =	9.2
Total N = Total # of species (native + non-native)	Total N =	20		
	% Native Species =	80.0		

FQI including adventives and non-natives

Table 2b. Inventory of vascular flora within Rose Creek Outfall Plot 2

(Depositional environment; most similar to West Ditch Outfall Plots 1&2 and Reference Plot)

Species Name	Common Name	WIC	C Value	Percent Cover (class)	Density (plants/m²)
Acer negundo	box elder	FACW-	1	2	b
Amaranthus retroflexus	red root pigweed	FACU+	*	3	22.0^a
Ambrosia artemisiifolia	common ragweed	FACU	0	2	ь
Ambrosia trifida	giant ragweed	FAC+	0	3	6.75 ^a
Bidens connata	purple-stemmed beggar-ticks	OBL	2	1	b
Bidens frondosa	devil's beggars ticks	FACW	i	2	4.0 ^a
Campensis radicans	trumpet creeper vine	FAC	2	3	b
Carex blanda	common wood sedge	FAC	2	1	0.25 ^a
Carex lacustris	common lake sedge	OBL	6	4	21.0°
Catalpa speciosa	hardy catalpa	FACU	0	3	0.1
Commelina communis	asiatic dayflower	FAC	*	1	b
Cephalanthis occidentalis	buttonbush	OBL	4	2	< 0.1
Fraxinus pennsylvanica	green ash	FACW	5	2	< 0.1
Laportea canadensis	wood nettle	FACW	2	3	b
Lycopus americanus	American bungleweed	OBL	3	2	b
Phragmites australis	Common reed	FACW+	1	2	b
Phalaris arundinacea	reed canary grass	FACW+	*	2	b
Polygonum amphibium	water smartweed	OBL	3	2	b
Populus deltoides	eastern cottonwood	FAC+	2	3	0.1
Salix nigra	black willow	OBL	3	4	0.1
Solidago canadensis	common goldenrod	FACU	1	3	b
Spartina pectinata	prairie cord grass	FACW+	4	2	1.54
Symphyotrichum lanceolatus	panicled aster	OBL	3	2	b
Toxicodendron radicans	poison ivy	FAC+	1	2	b
Typha angustifolia	narrowleaf cattail	OBL	*	2	1.5 ^a
Ulmus pumila	Siberian elm	UPL	*	2	b

Notes:

a - Measured in four 1m*1m quadrats;

b - Not present in 1m*1m quadrats, no density measurement taken

Cover Classes:

$$1 = 0-1\%$$
; $2 = 1-5\%$; $3 = 5-25\%$; $4 = >25-50\%$; $5 = 50-75\%$; $6 = >75-95\%$; $7 = >95-100\%$

	Total C ≈	46	Total C =	46	
$FQI = Mean C \times SqRt N$	N =	21	Total $N = $	26	
FQI = Floristic Quality Index	Mean C ≈	2.2	Mean C =	1.8	
N = Number of Native Species	Native FQ1 =	10.0	FQI ≈	9.0	
Total N = Total # of species (native + non-native)	Total N ≈	26			
	% Native Species =	80.8			

FQI including adventives and non-natives

Table 3a. Inventory of Vascular Flora within Reference Site Belt Transect Immediately Downstream of Stormwater Outfall Location

Species Name	Common Name	WIC	C Value	Percent Cover (class)	Density (plants/m²)
Acer saccharinum	silver maple	FACW	ì	2	0.1
Carduus nutans	nodding thistle	UPL	*	2	2.5
Carex lacustris	common lake sedge	OBL	6	5	32.2
Glechoma hederacea	creeping charlie	FACU	*	i	0.5
Leersia virginica	white grass	FACW	4	2	2.9
Lonicera maackii	bush honeysuckle	UPL	*	3	0.3
Solidago canadensis	Common goldenrod	FACU	1	1	0.9
Toxicodendron radicans	poison ivy	FAC+	1	1	0.6
Vitis riparia	Riverbank grape	FACW-	2	2	0.2

Note: Plot location on landscape, hydrology, etc. compares most directly with West Ditch Outfall Plot #3

Cover Classes:

$$1 = 0-1\%$$
; $2 = 1-5\%$; $3 = 5-25\%$; $4 = >25-50\%$; $5 = 50-75\%$; $6 = >75-95\%$; $7 = >95-100\%$

			FQI including	adventive/non-native species	S
	Total C =	15	Total C =	15	
$FQI = Mean C \times SqRt N$	N =	6	Total N =	9	
FQI = Floristic Quality Index	Mean C =	2.5	Mean C=	1.67	
N = Number of Native Species	Native FQI =	6.1	FQI =	5.00	
Total $N = Total \# of species (native + non-native)$	Total N =	9			
	% Native Species =	66.7			

Table 3b. Inventory of Vacscular Flora within Reference Plot (similar hydrology and topography to West Ditch plots 2 & 3 and Rose Creek plots)

Species Name	Common Name	WIC	C Value	Percent Cover (class)	Density (plants/m²)
Acer saccharinum	silver maple	FACW	1	2	0.3 ^{-h}
Ambrosia trifida	giant ragweed	FAC+	0	2	c
Aster lanceolatus	panicled aster	OBL	3	2	c
Calystegia sepium	hedge bindweed	FAC	1	2	c
Carex lacustris	common lake sedge	OBL	6	3	11.3 ^{-b}
Carex muskingumensis	muskingum sedge	OBL	6	2	2.3 ^{-b}
Carex vulpinoidea	Fox sedge	OBL	3	2	c
Cephalanthis occidentalis	buttonbush	OBL	4	2	c
Cornus drummundii	rough-leaved dogwood	FAC	2	2	¢
Eleocharis sp.	a spikerush		a	2	3.0 ^{-b}
Elymus virginicus	Virginia wild rye	FACW-	4	2	c
Erechites hieracifolia	Fireweed	FACU	2	2	1.7 ^{-b}
Euonymous fortunei	wintercreeper	UPL	*	2	e
Fraxinus pennsylvanica	green ash	FACW	5	3	e
Hordium jubatum	squirrel-tail grass	FAC+	*	2	c
Leersia virginica	white grass	FACW	4	3	44.0 ^{-b}
Polygonum pensylvanicum	Pennsylvania smartweed	FACW+	1	l	1.0 ^{-b}
Sagittaria latifolia	common arrowhead	OBL	4	2	2.7 ^{-b}
Salix nigra	black willow	OBL	3	2	c
Sium suave	water parsnip	OBL	5	2	e
Solidago canadensis	Common goldenrod	FACU	1	3	c
Toxicodendron radicans	poison ivy	FAC+	1	2	c
Typha latifolia	common cattail	OBL	1	3	2.7 ^{-b}
Ulmus americana	American elm	FACW-	5	2	c
Vitis riparia	Riverbank grape	FACW-	2	3	e

Notes:

Cover Classes:

1 = 0 - 1%; 2 = 1 - 5%; 3 = 5 - 25%; 4 = > 25 - 50%; 5 = 50 - 75%; 6 = > 75 - 95%; 7 = > 95 - 100%

^a - probably E. palustris, but no fruits/seeds present to confirm ID; not used for FQI

b - Measured in three 1m*1m quadrats

c - Not present in 1m*1m quadrats; no density measurement taken

C Total = 64 N =22 $FQI = Mean C \times SqRt N$ Mean C = FQ1 = Floristic Quality Index 2.91 Native FQI = 13.6 N = Number of Native Species Total N = 25 Total N = Total # of species (native + non-native)% Native Species = 88

FQI including adventive/non-native species
Total C =
Total N = 64
Mean C= 24
FQI = 2.67
13.06

ATTACHMENT E ERED DATABASE

Table E-1 ERED Results for Benthic Organisms: Arsenic

ear Author	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc_Wet	Conc_U nits	Effect Class	Toxicity Measure	Exposure Route	Species Body Part	Species Start Lifestage	Species Habitat	Species Feeding Behavior	Comments
Spehar, R.L., Flandt, J.T., Anderson, R.L., 980 Detoe, D.L.	Arch Environ Contam Toxicol 09:53-63	Stagnicola emarginatus	Snail	Arsenic	3.0	MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Not Specified	Not Specified	Mixture Of 4 Arsenic Cmpds, Est Body Burden From Graph
Spehar, R.L., Flandt, J.T., Anderson, R.L., 980 Detce, D.L.	Arch Environ Contam Toxicol 09:53-63	Stagnicola emarginatus	Snail	Arsenic	3.0	MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Not Specified	Not Specified	Mixture Of 4 Arsenic Cmpds, Est Body Burden From Graph
Spehar, R.L., Flandt, J.T., Anderson, R.L., 980 Defoe, D.L.	Arch Environ Contam Toxicol 09:53-63	Stagnicola emarginatus	Snall	Arsenic	3,0	MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Not Specified	Not Specified	Mixture Of 4 Arsenic Cmpds, Est Body Burden From Graph
Spehar, R.L., Flandt, J.T., Anderson, R.L., 980 Defoe, D.L.	Arch Environ Contam Toxicol 09:53-63		Snall	Arsenic	3.0	MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Not Specified	Not Specified	Mixture Of 4 Arsenic Cmpds, Est Body Burden From Graph
003 St-Jean SD, SC Courtenay, RW Parker	Water Qual Res J Can 38(4):647-666	Mytilus edulis	Mussel	Arsenic	3.0	MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Intertidal zone on rocks, pilings and flats; may extend to depths over 40 ft.	Filter plankton, diatoms, bottom vegetation	
003 St-Jean SD, SC Courtenay, RW Parker		Mytilus edulis	Mussel	Arsenic	3.	6 MG/KG	Growth	NOED			Adult	Intertidal zone on rocks, pilings and flats;	Filter plankton, diatoms, bottom vegetation	Length - Growth in test animals increased in direct proportion to proximity to pulpmill effluent plume whi was deemed to reflect not the contaminants, but the increased amounts of nutrients.
Spehar, R.L., Flandt, J.T., Anderson, R.L., 980 Defoe, D.L.	Arch Environ Contam Toxicol 09:53-63		Water flea	Arsenic			Mortality	NOED	Combined	= 1=	Adult	Southwestern to south-central Canada, Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	Mixture Of 4 Arsenic Cmpds, Est Body Burden From Graph, Tissues Exposed 21 D
Spehar, R.L., Flandt, J.T., Anderson, R.L., 980 Defoe, D.L.	Arch Environ Contam Toxicol 09:53-63	Helisoma campanulata	Snail	Arsenic		4 MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Not Specified	Not Specified	Mixture Of 4 Arsenic Cmpds, Est Body Burden From Graph
Spehar, R.L., Flandt, J.T., Anderson, R.L., 980 Defoe, D.L.	Arch Environ Contam Toxicol 09:53-63	Daphnia magna	Water flea	Arsenic	4 1	4 MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Southwestern to south-central Canada, Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	Mixture Of 4 Arsenic Cmpds, Est Body Burden From Graph, Tissues Exposed 21 D
Spehar, R.L., Fiandt, J.T., Anderson, R.L., 980 Defoe, D.L.	Arch Environ Contam Toxicol 09:53-63	Helisoma campanulata	Snail	Arsenic	4.	2 MG/KG	Mortality	ED16	Combined	Whole Body	Adult	Not Specified	Not Specified	Mixture Of 4 Arsenic Cmpds, Est Body Burden From Graph
	Arch Environ Contam Toxicol 09:53-63	Daphnia magna	Water flea	Arsenic	4.	4 MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Southwestern to south-central Canada, Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	Mixture Of 4 Arsenic Cmpds, Est Body Burden From Graph, Tissues Exposed 21 D
Spehar, R.L., Flandt, J.T., Anderson, R.L., 980 Defoe, D.L.	Arch Environ Contam Toxicol 09:53-63	Hellsoma campanulata	Snail	Arsenic	5.	8 MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Not Specified	Not Specified	Mixture Of 4 Arsenic Cmpds, Est Body Burden From Graph
Spehar, R.L., Flandt, J.T., Anderson, R.L., 980 Defoe, D.L.	Arch Environ Contam Toxicol 09:53-63	Pteronarcys dorsala	Glant Black Stonefly	Arsenic		6 MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Abundant in streams and rivers across northern half of continent south to Montana, Minnesota, and in Appalachians to Georgia		Mixture Of 4 Arsenic Cmpds, Est Body Burden From Graph
Spehar, R.L., Flandt, J.T., Anderson, R.L., 980 Defoe, D.L.	Arch Environ Contam Toxicol 09:53-63	Pteronarcys dorsala	Glant Black Stonefly	Arsenic		7 MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Abundant in streams and rivers across northern half of continent south to Montana, Minnesota, and in Appalachians to Georgia	Larvae primarily detritivores, herbivores in mixed substrata, detritus, woody debris	Mixture Of 4 Arsenic Cmpds, Est Body Burden From Graph
Spehar, R.L., Flandt, J.T., Anderson, R.L., 980 Defoe, D.L.	Arch Environ Contam Toxicol 09:53-63	Pteronarcys dorsala	Glant Black Stonefly	Arsenic	8.	4 MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Abundant in streams and rivers across northern half of continent south to Montana. Minnesota, and in Appalachians to Georgia		Mixture Of 4 Arsenic Cmpds, Est Body Burden From Graph
Spehar, R.L., Flandi, J.T., Anderson, R.L., 980 Defoe, D.L.	Arch Environ Contam Toxicol 09:53-63	Pteronarcys dorsata	Glant Black Stonelly	Arsenic	8.	4 MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Minnesota, and in Appalachians to Georgia	Larvae primarity detritivores, herbivores in mixed substrata, detritus, woody debris	Mixture OI 4 Arsenic Crnpds, Est Body Burden Fron Graph
Spehar, R.L., Flandt, J.T., Anderson, R.L., 1980 Defoe, D.L.	Arch Environ Contam Toxicol 09:53-63	Daphnia magna	Water flea	Arsenic	9.	8 MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Southwestern to south-central Canada, Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	Mixture Of 4 Arsenic Cmpds, Est Body Burden From Graph, Tissues Exposed 21 D
Spehar, R.L., Flandt, J.T., Anderson, R.L., 980 Defoe, D.L.	Arch Environ Contam Toxicol 09:53-63	Helisoma campanulata	Snall	Arsenic	1	6 MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Not Specified	Not Specified	Mixture Of 4 Arsenic Cmpds, Est Body Burden Fron Graph

Highlighted cells indicates selected NOED and LOED concentrations.

Table E-2 ERED Results for Benthic Organisms: Cadmium

Year	Author	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc_Wet	Conc_Units	Effect Class	Toxicity Measur	e Exposure Rout	e Species Body Part	Species Start Lifestage	Species Habitat	Species Feeding Behavior	Comments
1981 Hata	akeyama S, M Yasuno	Ecotoxicol Environ Sal 05:341-380	Moina macrocopa	Cladoceran	Cadmium	0.5	MG/KG	Mortality	NOED	Ingestion	Whole Body	Other	Not Specified Widely distributed in North America in	Not Specified	Food is Cadmium fed Chlorella sp.
		alata de la constante de la co		THE RESERVE THE PARTY									permanent bodies of water with submerged		De la managarità
2005 Star	nley, JK, BW Brooks; TW LaPoint	Environ Tox & Chem 24:902-908	Hyalella azteca	Amphipod - Freshwater	Cadmium	0.59	MG/KG	Growth	ED20	Water	Whole Body	Adult	vegetation Widely distributed in North America in	Detritivore	Lab reconsituted water
											-		permanent bodies of water with submerged		
2005 Star	nley, JK; BW Brooks; TW LaPoint	Environ Tox & Chem 24:902-908	Hyalella azteca	Amphipod - Freshwater	Cadmium	0.59	MG/KG	Reproduction	NOED	Water	Whole Body	Adult	vegetation	Detritivore	Lab reconsituted water
													Widely distributed in North America in permanent bodies of water with submerged		
2005 Star	nley, JK; BW Brooks; TW LaPoint	Environ Tox & Chem 24:902-908	Hyalella azteca	Amphipod - Freshwater	Cadmium	0.61	MG/KG	Growth	NOED	Water	Whole Body	Adult	vegetation	Detritivore	Lab reconsituted water
		- F.	4-	-			114 - 6		1.0				Widely distributed in North America in permanent bodies of water with submerged		
2005 Star	nley, JK; BW Brooks; TW LaPoint	Environ Tox & Chem 24:902-908	Hyalella azteca	Amphipod - Freshwater	Cadmium	0.61	MG/KG	Reproduction	NOED	Water	Whole Body	Adult	vegetation	Detritivore	Lab reconsituted water
	akeyama S, M Yasuno	Ecotoxicol Environ Sal 05:341-380	Moina macrocopa	Cladoceran	Cadmium	0.708	MG/KG	Mortality	LOED	Ingestion	Whole Body	Other	Not Specified Widely distributed in North America in	Not Specified	
-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1 1111		1000				permanent bodies of water with submerged		
2005 Sta	nley, JK; BW Brooks; TW LaPoint	Environ Tox & Chem 24:902-908	Hyalella azteca	Amphipod - Freshwater	Cadmium	0.84	MG/KG	Growth	NOED	Water	Whole Body	Adult	vegetation	Detritivore	Lab reconsituted water
	110												Widely distributed in North America in permanent bodies of water with submerged		
2005 Sta	nley, JK; BW Brooks; TW LaPoint	Environ Tox & Chem 24:902-908	Hyalella azteca	Amphipod - Freshwater	Cadmium	0.84	MG/KG	Reproduction	NOED	Water	Whole Body	Adult	vegetation	Detritivore	Lab reconsituted water
													Widely distributed in North America in		
2005 814	nley, JK; BW Brooks; TW LaPoint	Environ Tox & Chem 24:902-908	Hyalella azleca	Amphipod - Freshwater	Cadmium		MG/KG	Growth	NOED	Water	Whole Body	Artuit	permanent bodies of water with submerged vegetation	Detritivore	Lab reconsituted water
2000/014	ingy, or, off blooks, 144 Carolin	EINIOI TOX & CHRIT 24.302-900	rywena agreca	Pringripos - Freshmann	Cadmidit		monto	- Control	11000	11.000	Titions doug		Widely distributed in North America in		The second secon
			The state of the s	American Construction	Contractions		MG/KG	Denveduction	NOCO	Water	Whole Body		permanent bodies of water with submerged vegetation	Detritivore	Lab reconsituted water
2005 Sta	nley, JK; BW Brooks; TW LaPoint	Environ Tox & Chem 24:902-908	Hyalella azleca	Amphipod - Freshwater	Cadmium	_	MG/KG	Reproduction	NOED	VY acer	Writing Body	Adult	vegetation	Detrilivore	No difference in weight. Residue value
- 1		Environmental Health Perspectives, Vol.			L							Land	last to the last	Land of the second	taken from graph and is approximate.
1986 Jen	kins, K.D. and B.M. Sanders r, R.S., J.W. Williams, F.I. Saksa, R.L.	65, pp. 205-210,	Neanthes arenaceodentata	Neanthes	Cadmium	1.12	MG/KG	Growth	NOED	Absorption	Whole Body	Adult	Not Specified	Feeds on living and dead animals	Radiotracer study. 17% Significant Reduction In Growth,
1985 But	al and J.M. Neff	Environ Tox & Chem 04:181-188	Mysidopsis bahia	Mysid	Cadmium	1.29	MG/KG	Growth	LOED	Absorption	Whole Body	Juvenile	Brackish sub-tropical waters	Phytoplankton, small zooplankters	Mean Dry Weight Of Animals
Car	r, R.S., J.W. Williams, F.I. Saksa, R.L.		Manidannia babia	Monid	Codmium		MG/KG	Mortality	NOED	Absorption	Whole Body	humpile			
1985 Bul	nl and J.M. Neff	Environ Tox & Chem 04:181-188	Mysidopsis bahia	Disymp	Cadmium	1.29	PIMUNG	Monality	INOED	Absorption	W nois Body	Juvenile	Brackish sub-tropical waters Holarctic, coastal marine, mainly brackish	Phytoplankton, small zooplankters	No effect on mortality.
		Ecotoxicological Testing for the Marine	and the second second										lakes and estuaries, marine-glacial relict		
1984 Sur	ndelin, B. rr, R.S., J.W. Williams, F.I. Saksa, R.L.	Environment, Vol. 2, 588 P, 1984	Monoporeia affinis	Amphipod	Cadmium	- 1	MG/KG	Mortality	NOED	Combined	Whole Body	Immature	lakes	Detritivore	Body Burden Est, From Graph 15% Significant Reduction In Growth,
1985 Bul	nl and J.M. Neff	Environ Tox & Chem 04:181-188	Mysidopsis bahia	Mysid	Cadmium	2.38	MG/KG	Growth	ED15	Absorption	Whole Body	Juvenile	Brackish sub-tropical waters	Phytopiankton, small zooplankters	Mean Dry Weight Of Animals
Car	r, R.S., J.W. Williams, F.I. Saksa, R.L.		Land to the state of the state		0-4-1-		MG/KG	Marketon.	LD46		Minute Best	t			ages becomes in modelike
1985 Bul	nl and J.M. Neff	Environ Tox & Chem 04:181-188	Mysidopsis bahia	Mysid	Cadmium	2.3	BIMG/KG	Mortality	LD45	Absorption	Whole Body	Juvenile	Brackish sub-tropical waters	Phytoplankton, small zooplankters	45% Increase in mortality.
							1								Cadmium residue numbers are for male
1005 Por	desa I C Davide	Ecotoxicol Environ Sal 30:195-201	Chironomus riparius	Midge	Cadmium		6 MG/KG	Mortality	LD100	Water	Whole Body	Larval	Not Specified	Not Specified	C.riparius, and are averages of all generations. Effects Data is mixed gende
ISSOLO	stma J, C Davids	Ecotoaco Envior Sai 30.185-201	Cimonomus ripanus	milige	Caomium	2.1	ojwarka	Invitality	LD100	VV dater	Whole body	Carvar	Holarctic, coastal marine, mainly brackish	Ivor opecined	generations. Enects Data is mixed genue
								_					takes and estuaries, marine-glacial relict		
1983 Sur	ndelin, B.	Mar Biol 74, 203-212 (1983)	Monoporeia affinis	Amphipod	Cadmium	-	3 MG/KG	Reproduction	NOED	Combined	Whole Body	Adult	in lakes of northern part of continent.	Detritivore	Percent Malformed Eggs 430% Increase in prenatal mortality
1978 Ma		J Fish Res Bd Can 35:461-469.	Daphnia galeata mendotae	Cladoceran	Cadmium	3.5	5 MG/KG	Mortality	LOED	Absorption	Whole Body	Population	especially glaciated regions	Feeds on algae and similar organisms	(aborted eggs and embryos).
		Army Corps of Engineers Report Technical		a									In lakes of northern part of continent,		
1984 Dill	on IM	Report, D-84-2 Army Corps of Engineers Report Technical	Daphnia galeata mendotae	Cladoceran	Cadmium	3.5	MG/KG	Heproduction	LOED	-	+		especially glaciated regions In lakes of northern part of continent,	Feeds on algae and similar organisms	Marshall, 1978, increased brood size
1984 Dill	on TM	Report, D-84-2	Daphnia galeata mendotae	Cladoceran	Cadmium	3.5	MG/KG	Reproduction	LOED			1	especially glaciated regions	Feeds on algae and similar organisms	Marshall, 1978, prenatal mortality
1984 Dill	on TM	Army Corps of Engineers Report Technical Report, D-84-2	Daphnia galeata mendotae	Cladoceran	Cadmium	26	MG/KG	Reproduction	LOED				In lakes of northern part of continent, especially glaciated regions	Feeds on algae and similar organisms	Marshall, 1978, reduced longevity
			Сартина усечна пненоснач			0.0		rieproduction							maishas, 1970, reduced forigavity
1988 Jer	kins KD, AZ Mason	Aquat Toxicol 12:229-244	Neanthes arenaceodentata	Neanthes	Cadmium	3.0	6 MG/KG	Reproduction	NOED	Water	Whole Body	Adult	Not Specified	Feeds on living and dead animals	Time pairing to laying of eggs
1988 Jer	nkins KD, AZ Mason	Aquat Toxicol 12:229-244	Neanthes arenaceodentata	Neanthes	Cadmium	3.0	6 MG/KG	Reproduction	NOED	Water	Whole Body	Adult	Not Specified	Feeds on living and dead animals	# eggs
															No significant difference in number of
1988 Jer	nkins, K.D. and A.Z. Mason	Aquat Toxicol 12:229-244.	Nereis arenaceodentata	Polychaete	Cadmium	3.	8 MG/KG	Reproduction	NOED	Absorption	Whole Body	NA	Cape Cod to Cape Hatteras; burrows in soft substrata	Predator on small invertebrates	eggs/pair or length of time from pairing to egg laying.
1989 Bro	own AF, D. Pascoe	J. Appl. Ecol 26:473-487	Pomphorhynchus laevis	Acanthocephalan paracite		3.832	MG/KG	Mortality	NOED	Water	Whole Body	Adult	Not Specified	Not Specified	use myrig.
							-						Introduced; spread to all Great Lakes, some rivers in Atlantic, Mississippi		
					1		1	1.00					drainage basins; attaches to rocks, other	Filter feeder; phytoplankton, bacteria, fine	Lessues Lessues
1996 Te	ssier, C. and J-S. Blais. ugens EHW, T Jager, R Creyghton,	Ecotoxicol Environ Sal 33:246-252.	Dreissena polymorpha	Mussel - Zebra	Cadmium		4 MG/KG	Mortality	NOED	Absorption	Whole Body	NA	hard surface Southwestern to south-central Canada.	detrital particles	No increase in mortality.
Mi	IS Kraak, AJ Hendriks, NM Van	day Land											Northwestern to south-central Canada, Northwestern to north-central US; ponds,		
	aalen, and W Admiraal	Environ Sci Tech 37:2145-2151	Daphnia magna	Water flea	Cadmium		4 MG/KG	Mortality	NOED	Water	Whole Body	Neonate	small lakes, clear and weedy waters	Feeds on algae and similar organisms	At 10 degrees C.
1989 Bro	own AF, D. Pascoe rr, R.S., J.W. Williams, F.I. Saksa, R.L.	J. Appl. Ecol 26:473-487	Gammarus pulex	Amphipod	Cadmium	4.34	MG/KG	Mortality	LD50	Water	Whole Body	Adult	Not Specified	Not Specified	Uninfected G. pulex 28% Significant Reduction In Growth.
	hl and J.M. Nefl	Environ Tox & Chem 04:181-188	Mysidopsis bahia	Mysid	Cadmium	4.3	6 MG/KG	Growth	ED28	Absorption	Whole Body	Juvenite	Brackish sub-tropical waters	Phytoplankton, small zooplankters	Mean Dry Weight Of Animals
	rr, R.S., J.W. Williams, F.I. Saksa, R.L. hl and J.M. Neff	Environ Tox & Chem 04:181-188	Mysidopsis bahia	Mysid	Cadmium	10	6 MG/KG	Mortality	LD94	Absorption	Whole Body	humaila	Prostrict and terrinal maters	Chadanianidae amail accadentaes	
1989 Bro	own AF, D. Pascoe	J. Appl. Ecol 26:473-487	Gammarus pulex	Amphipod	Cadmium	4.48	MG/KG	Mortality	LD50	Water	Whole Body	Adult	Brackish sub-tropical waters Not Specified	Phytoplankton, small zooplankters Not Specified	94% Increase in mortality. Infected G. pulex
				1 1 1 1 1									Widely distributed in North America in		
2005 Sta	anley, JK; BW Brooks; TW LaPoint	Environ Tox & Chem 24:902-908	Hyalella azteca	Amphipod - Freshwater	Cadmium	4.5	3 MG/KG	Growth	NOED	Water	Whole Body	Adult	permanent bodies of water with submerged vegetation	Detritivore	Lab reconsituted water
						1.0				1		1	Widely distributed in North America in		I I I I I I I I I I I I I I I I I I I
2005 81	anley, JK; BW Brooks; TW LaPoint	Environ Tox & Chem 24:902-908	Hyalella azteca	Amphipod - Freshwater	Cadmium		змд/кд	Depres de la constantina	NOED	Water	Whole Body	Adult	permanent bodies of water with submerged vegetation	Detritions	hab assessible and any
2000/01	and the discounty is the country	DUR-SUB-T-SU	- Janes delitore	Landwidge - Linstillatin	Caumum	4.5	Jimurnu	- Augiroduction	THOED	- V andr	THI TIONS BOOK	Audit	Widely distributed in North America in	Detritivore	Lab reconsituted water
1001	romann II WD Noov II B-bi-	Con I Fish Asset Sal to top 100	Lhadelle auton	Applicad Fort	O- de-		- HONG		worn				permanent bodies of water with submerged		Tap Water Exp_Conc are nominal
1991110	rgmann U, WP Norwood, IM Babirad	Can J Fish Aquat Sci 48:1055-1060	Hyalella azteca	Amphipod - Freshwater	Cadmium	4.	6 MG/KG	Mortality	NOED	Water	Whole Body	Embryo	Vegetation Widely distributed in North America in	Detritivore	concentrations
		11 21		1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1									permanent bodies of water with submerged		Tap Water +0.5 uM EDTA Exp_Conc are
			Hyalella azteca	Amphipod - Freshwater	Cadmium	4.	6 MG/KG	Mortality	NOED	Water	Whole Body	Embryo	vegetation	Detritivore	nominal concentrations
1991 Bo	rgmann U, WP Norwood, IM Babirad	Can J Fish Aquat Sci 48:1055-1060													Cadmium residue numbers are for male
1991 Bo	rgmann U, WP Norwood, IM Babirad	Can J Fish Aquat Sci 48:1055-1060					1						61 5		C.riparius, and are averages of all
	56.1		Oblinerance de												
	rgmann U, WP Norwood, IM Babirad	Can J Fish Aquat Sci 48:1055-1080 Ecotoxicol Environ Saf 30:195-201	Chironomus riparius	Midge	Cadmium	4.	8 MG/KG	Mortality	LD60	Water	Whole Body	Larval	Not Specified	Not Specified	generations. Effects Data is mixed gende
	56.1		Chironomus riparius	Midge	Cadmium	4.	8 MG/KG	Mortality	LD60	Water	Whole Body	Larval	Not Specified	Not Specified	
1995 Po	stma J, C Devids	Ecotoxicol Environ Saf 30:195-201		Midge		112		hit				Larval	ir lir	1 2	generations. Effects Data is mixed gender Data further partitioned into gill, hepatopancreas, abdominal muscle, carapace, antennal gland - gill had the
	stma J, C Devids			Midge Craylish	Cadmium	112	8 MG/KG	Mortality Mortality	LD60	Water	Whole Body Whole Body	Larvel Adult	Not Specified Not Specified	Not Specified Not Specified	generations. Effects Data is mixed gender Data further partitioned into gill, hepatopancreas, abdominal muscle, carapace, antennel gland - gill had the highest accumulation
1995 Po	stma J, C Davids	Ecotoxicol Environ Sal 30:195-201 Arch Environ Contam Toxicol 15:401-407	Orconectes virilis		Cadmium	112	2 MG/KG	hit	LD25	Water	Whole Body	Larvel Adult	Not Specified	1 2	generations. Effects Data is mixed gende Data further pertitioned into gill, hepatopancreas, abdominal muscle, carapace, antennel gland - gill had the highest accumulation
1995 Po	stma J, C Devids renda RJ.	Ecotoxicol Environ Saf 30:195-201		Midge Craylish Snail		112		hit				Larval Adult Adult	ir lir	1 2	generations. Effects Data is mixed gende Data lurther partitioned into gill, hepatopancreas, abdominal muscle, carapace, antennal gland - gill had the highest accumulation Abnormal behavior preceded death: snai
1995 Po 1986 Mi 1978 Sp	stma J, C Davids	Ecotoxicol Environ Sal 30:195-201 Arch Environ Contam Toxicol 15:401-407	Orconactes virilis Physa sp.		Cadmium	4.8	2 MG/KG	hit	LD25	Water	Whole Body	Adult Adult Larval	Not Specified Not Specified	Not Specified Not Specified	generations. Effects Data is mixed gende Data further partitioned into [iii], hepstopancreas, abdominal muscle, carapace, antennel gland - gill had the highest accumulation Abnormal behavior preceded death: snail extended from shell but unable to attach foot
1995 Po 1986 Mi 1978 Sp Po	stma J, C Devids renda RJ ehar RI, RI, Anderson, JT Flandt stma, JF, M.C Buckert-de Jong, N.	Ecotostcol Environ Saf 30:195-201 Arch Environ Contam Tostcol 15:401-407 Environ Pollut 15:195-208	Orconactes virilis Physa sp.		Cadmium	4.8	2 MG/KG 5 MG/KG	Mortality Survival	LD25 ED132	Water	Whole Body	Larvel Adult Adult Larval	Not Specified	Not Specified	generations. Effects Data is mixed gende Data lurther partitioned into gill, hepatopancreas, abdominal muscle, carapace, antennel gland - gill had the highest accumulation Abnormal behavior preceded death: snail

Table E-2 ERED Results for Benthic Organisms: Cadmium

Year	Autho	or	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc_Wel	Conc Units	Effect Class	Tozicity Measure	Espoeure Route	Species Body Part	Species Start Lifestage	Species Habitet	Species Feeding Bahavior	Comments
														Southwestern to south-central Canada Northwestern to north-central US, ponds		
2002 S	Bereta C SJ Markich D Soares	DJBaird AMVM	Aqual Toxicol 61 143-154	Daphnia megné	Water hea	Casmum	6	MG/KG	Mortalily	LD50	Water	Whole Body	Juv e nile	small lakes, clear and weedy waters	Feeds on algae and similar organisms	tione G 62
- 1	talakeyama S, M Yasur	· ·	Ecotoxicol Environ Sel 05,341-380	Moina macrocops	Cladoceran	Cagmium		MG/KG	Reproduction	ense.	Ingestion	Whole Body	Other	Not Specified	Not Specified	Food is Cadmium led Chlorella sp
198117	natekeyama o, er resur	, C	ECOLOGICAL ENVIOUR SAN 03:341-360	Monta Macrocopa										Widely distributed in North America in		
1001 B	Borgmann U, WP Norwo	nort IM Bahran	Cen J Fish Aquat Sc: 48:1055-1060	Hysiella azieca	Amphipod - Freshwater	Caomium	6	MG/KG	Mortality	LOED	Water	Whole Body	Embryo	permanent bodies of water with submerged vegetation	Delintyone	Tap Water Exp_Conc are nominal concentrations
-	sognamo, no nomo	OCC, III DECISO	34 10 100 100											Holerctic coastal marine, mainly brackish lakes and estuaries marine-glacial relict		
1983 S	Sundelin, B		Mar Biol 74, 203-212 (1983)	Monoporela attenta	Amphipod	Cadmium	6	мажа	Reproduction	LOED	Combined	Whole Body	Adult	lakes	Definitivore	Percent Mattermed Eggs
														Horarctic, coastal marine, mainly brackish rakes and estuaries, marine-blackal react		
1983 5	Sundelin, B		Mar Biol 74, 203-212 (1983)	Monoporeus atfins	Amphipod	Cadmium	6	MC/KG	Mortality	NOED	Combined	Whole Body	Adult	lakes	Oglimvore	
														Widely distributed in North America in permanent bodies of water with submerged		Tap Water +20mg Humic Acid Exp_Conc
1991 E	Botgmann U, WP Notwo	rood, IM Babirad	Can J Fish Aqual Sci 48 1055-1060	Hyalella azteca	Amphipod - Freshwater	Cadmium	6.4	MG/KG	Mortality	NOED	Water	Whole Body	Embryo	vegetation	Definitivora	are nominal concentrations
,	Rufe, J.H., and R.W. Ali		Enwon Toz & Chem 15 466 471	Mytilus edulis	Mussel	Cadmium	6.45	MG/KG	Mortality	NOED	Combined	Whole Body	Adua	Intertidal zone on rocks, plings and flats may extend to depths over 40 ft	Filter plankton, dialons, bollom vegetation	Fatimated Wei Warchz
1989 E	Brown AF D Pascoe	- Company	J Appl Ecol 26 473-487	Gammarus pules	Amphipod	Cadmium	7 36	MG/KG		LD50	Water	Whole Body	Adult	Not Specified Southwestern to south central Canada.	Not Specified	Unministed G. pulex F1 neoneles, Multi-generalizmal study
		1												Northwestern to north-central US, ponds		where adults are exposed to same
2006	Guan R, WX Wang		Environ Pollul 141 343-352	Daphnia magna	Water flea	Cadmium	7 38	MG/KG	Growth	ED13	Water	Whole Body	Juversie	small laxes, clear and weedy waters	Freeds on algae and similar organisms	concentration
1984	Postma JF M C Buct Steals, and C Davids	ckert de Jong, N	Arch Environ Contam Toxocci 25:143-148	Chironomus ripatrus	Midge	Cagnium	_ 78	MGKG	Mortality	LOED	Absorption	Whole Body	Larva	Not Specified	Not Specified	increased mortality
- 1	Postma JF, MC Buc				Midge	Caderum	7.	MG/KG	Growth	NOED	Absorption	Whole Body	Larval	Not Specified	Not Specified	No significant difference in weight gein measured in males as dry weight
{#	Staals, and C. Davids Postma J.F. M.C. Buch	ckert-de Jong N	Arch Environ Contam Toxicol 28.143-148	Chironomus riperius					GIOWAN							No significant difference in number of eggs
	Staats, and C Davids		Arch Environ Contam Toxicol 26 143-148	Chironomus upares	Midge	Cadmuum	76	MGKG	Reproduction	NOED	Absorption	Whole Body	Larval	Not Specified Wyden destricted in North America in	Not Specified	per female
]				1			l				1		[permanent bodies of water with submerged		Tao Water Not significantly different from
1991	Borgmann U, WP Norw	Mood, M Babilad	Can J Fish Aqual Sci 48 1055-1060	Hyalella aztoch	Amphipod Freshwater	Cadmium	- 76	MG/KG	Mortality	ED50	Water	Whole Body	Embryo	vegetation Widely distributed in North America in	Deltrinoie	the other measured ED50 values
					1	1	l		1			1	1	permanent bodies of water with submerged		Tap Water +20mg Humic Acid Exp_Conc
1991	Borgmann U, WP Norw	moos, IM Babrad	Can J Fish Aguet Sc: 48.1055-1060	Hysiele, azieca	Amphipod - Freshwater	Cadmum	79	B MG/KG	Mortality	roeg	Mate.	Whole Body	Embryo	vegetakon. Widely distributed in North America in	Oe!rkwoxg	are nominal concentrations
							!			ĺ				permanent bodies of water with submerged		Tap Water +0 5 ⊍W EDTA Exp, Conc atre
1991	Bolgmann U, WP Norw	wood, IM Babirad	Can J Fish Aqual Sci 48 1055-1060	Hysiella azieca	Amphipod - Freshwater	Cadmium	- 7	MG/KG	Mortainy	LOED	Water	Whole Body	Embryo	vegelation Southwestern to south-central Canada	Definitivore	nominal concentrations
	Barala C SJ Markich I	DiBard AMVM		Į.		ļ	Į.	1	ļ	(Į.	Į.	Į.	Northwestern to north-central US, pands	ļ	
2002	Soares		Aqual Toxicol 61 143-154	Daphnia magria	Water fea	Cadmium		8 MG/KG	Mortality	LD50	Water	Whole Body	Juvenile	small takes, clear and weedy waters	Feeds on aigse and similar organisms	clone G-19 No Effect On Brood Size Residue at 6
1981	Hatakeyama, S and M	Yasuno	Ecologcoi Enwron Sal 05 341-350	Moina macrocopa	Cladoceran	Cadmium		8 MG/KG	Reproduction	NOED	Ingestion	Whole Body	Larvel	Not Specified	Not Specified	days
1001	Halakeyama S M Yasu	uno.	Ecological Environ Sat 05 341-390	Moina macrocopa	Cladoceran	Cadmium	l a.	MG/KG	Reproduction	ED22	Ingestion	Whole Body	Other	Not Specified	Not Specified	Food is Cadmium led Chloretta sp
100.1	Carter and San Cost		CONTROL DIAMON CAR DO SA 1-930	individual individual						LOLL				Widely distributed in North America in		10 % Tap Water + 90% glass-distilled
1001	Borgmann U, WP Norw	wood IM Rabyad	Can J Fish Aqual Sci 48.1055-1060	Hyaletta azteca	Amphipod - Freshwater	Cadmium	8	4 MG/KG	Mortality	NOED	Wales	Whole Body _	Embryo _	permanent bodies of water with submerged vegetation	Daltrilwore	Water Exp_Conc are nominal concretrations
	Heugens EHW T Jage MHS Kraak AJ Hendré	er A Creyghlon					1							Southwestern to south-central Canada.		
2003	MHS Kraak AJ Hendré Straalen, and W Admiri	rks NM Van	Enwron Sci Tech 37 2145-2151	Daphnia magna	Water Rea	Cadmium	e-	MGKG	Mortality	LD100	Water	Whole Body	Necnate	Northwestern to north-central US ponds. small takes, clear and weedy waters	Feeds on algae and similar organisms	At 20 degrees C
	51.42.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1								1							Significant decrease in average number of
1976	Marshall, J S		J Fish Res Bd Can 35 461-469	Daphnia galeala mendolas	Cladoceran	Cedmium		6 MG/KG	Mortality	LOED	Absorption	Whole Body	Population	in lakes of northern part of continent, especially glaciated regions	Feeds on algae and similar organisms	individuate and average bromass of population
-T	Dillon TM		Aimy Corps of Engineers Report Technical	I	Cladoceran	Cadmium		MG/KG		NOFO			7	In lakes of northern part of continent		Mershall, 1978
-			Report, D-84-2	Ciaphnia galeşta mendolae	Claboceran	Ceamium	86	MUAG	Growth	NOED			 	especialty glacialed regions Southwestern to south central Canada	Feeds on eigee and similar organisms	Merahali, 1978
	Feraid JF JM Jouany Vassour	R Truhaut P	Ecolosicol Environ Sal 07 43-52	Daphnia magna	Water fea	Cadmum	1 .	в мажа	Monainy	LD73	Ingestion	Whole Body		Northwestern to north central US, ponds small lakes, clear and weedy waters	Foods on since and souds, suggester.	For Cartesian amount of Chinatia indoors
T			Econoacor granor our or 43-52	Diginik magna				1		15.5	in specific	Trilow Gody		Widely distributed in North America in	Feeds on algae and similar organisms	Fed Cadmium exposed Chlorella vulgars Tap Water +20mg Humic Acid Not
1991	Borgmann U WP Norw	wood IM Bahirad	Can J Fish Aquat Sci 48 1055-1060	Hysiella azieca	Amphipod - Freshwaler	Cadmium	i a	вма/ка	Mortality	ED50	Water	Whole Body	Embryo	permanent bodies of water with submerged vegetation	Delritwore	significantly different from the other measured 6C50 values
1	CONGRESS OF THE PARTY	HOOD, I'M DODNING	Sur 5 1 311 Aquai Sc 42 1033 1000	i i a a a a a a a a a a a a a a a a a a	100	- Country		- marko	- Horitany	2030	118.41	1111/14 2003	ig/mb/yo	Widely distributed in North America in	Delinion	measured EC50 values Tep Water +0.5 uM EDTA Not significantly
1991	Borgmann U, WP Norw	wood, IM Babirad	Can J Fish Aqual Sci 48 1055-1060	Hydrella azreca	Amphipod - Freshwater	Cadmium		8 MG/KG	Mortality	ED50	Water	Whole Body	Embryo	permanent bodies of water with submerged regetation	Detriliyore	different from the other measured EC50
				_				MOKG	T			T				
1981	Hatakeyama S, M Yası	sun0	Ecological Environ Saf 05 341-380	Moine macrocope	Cladoceran	Cadmium	+ - °	*MUK(i	Reproduction	ED84	Ingastion	Whole Body	Other	Not Specified Widely distributed in North America in	Not Specified	Food is Cadmium led Chlorella sp
ا ہے ا	Boromann I - Mill s	anna 44 D-5	rian I Emb Amusi En 10 1001 1000	Liverialis and an	Amphined Creek	Cadmium		, Lucac	Magazi	NOCE				permanent bodies of water with submerged		Tap Water + Sediment A Exp_Conc are
	Borgmann U, WP Norw		Can J Fish Aqual Sci 48,1055-1060	Hyalella szieca	Amphipod Freshwaler	Cadmium	 -	4 MG/KG	Mortality	NOED	Water	Whole Body	Embryo	vegelation Southwestern to south-central Canada	Delravote	nominal concentrations
	Barata C SJ Markich. Soares	DJ Band AMVM	Aqual Toxocci 61.143 154	Daphnia magna	Water flea	Cadmium		в м <u>с</u> жс	Mortality	LD50	Combined	Whole Body	Juvenile	Northwestern to north-central US ponds	Earth as also and also as	icione G-62
1				Joseph Market		Jaconstan		7		2000	- No.	. Hore excey	- Control - Cont	small lakes, clear and weedy waters	Feeds on algae and similar organisms	
				1	1			i	1			1				Cadmium residue numbers are for male C riparius, and are averages of all
1995	Posima J. C. Diavids		Ecotorico: Environ Sat 30 195-201	Chironomus riparius	Midge	Cadmium	9	в мсже	Mortality	LD60	Water	Whole Body	Larval	Not Specified	Not Specilled	generations Effects Date is mired gender
						1	1			1		1	_	Southwestern to south-central Canada Northwestern to north-central US ponds.		F6 neonales: Multi generational sludy. where adults are exposed to same
2006	Guan R, WX Wang	en il farm	Environ Pollut 141 343-352	Daphnia magna	Water floa	Cadmium	9 98	MGKG	Growth	ED39	Waler	Whole Body	Juvenile	small lakes, clear and weedy waters	Feeds on algae and similar organisms	Concentration
19/8	Spehar RL, Rt. Anders	son, JI randi	Environ Pollut 15.195-208	Pnysa sp	Snari	Cadmium	 -'	омсжа	Survival	ED117	Water	Whole Body	Adult	Not Specified Holarclic coasis marine, mainly prackish	Not Specified	ļ <u>-</u>
1,00	Sundehn, B		Ecotoxicological Testing for the Marine		4man	-	l .	O MG/KG		l	L	l	L	lakes and estuaries marine-glacial relici	L	i
	aniothii, B		Environment, Vol. 2, 588 P, 1984	Monoporeia affinis	Amphipod	Cadmium	 '		Monality	NOED	Combined	Whole Body	Aduit	lakes	Datrillvore	Body Burden Est From Graph
1981	1			Marine management	Cladoceran	Cadmium	 	омажа	Reproduction	LOED	Ingestion	Whole Body	Larva	Not Specified	Not Specified	Reduced Brood Size. Residue at 6 days
	Halakeyama S and M	Yasuno	Ecological Environ Sal 05 341-350	Moina macrocopa			1	омд/ка	Mortality	NOED	Ingestion	Whole Body	Larvai	Not Specified	Not Specified	No Effect On Survival Residue at 6 days.
1981	Halakeyama S and M Halakeyama, S and M		Ecotoacol Environ Sal 05 341 350 Ecotoacol Environ Sal 05 341 350	Moina mecrocopa	Cladoceran	Cadmium		O PRODUCT								
1981				l .	Cladoceran	Cadmium		VIII.G			ì	1		Southwestern to south-control Carvada	THE OPENIAL	F2 neonales, Multi generalional study
				l .	Cladoceran Water bea	Cadmium	10 2	MG/KG	Growth	ED28	Water	Whole Body	Juvenila	Southwestern to south-central Canada Northwestern to north-central US, ponds small lakes, clear and weedy waters		F2 neonales, Multi generalizinal study where adults are exposed to same
	Hatakeyama, S. and M		Ecotoxico Environ Saf 05 341 350	Moina mecrocopa						ED28	Water	Whole Body	Juvenile	Southwestern to south-central Canada Northwestern to north-central US, ponds	Feeds on algae and similar organisms	F2 neonales, Multi generational study writere adults are exposed to same concentration. Data further partitioned into 9%,
2006	Hatakeyama, S. and M Guan R. WX Wang		Ecotoacca Emilion Saf 05 341 350 Environ Pollut 141 343-352	Moina mecrocopa Daphnia magna	Water bea	Cadmidm	10 2	Мажа		ED28	Water	Whole Body	Juvenila	Southwestern to south-central Canada Northwestern to north-central US, ponds		F2 neonales, Muhi generalional study writere adults are exposed to same concentration. Data further partitioned into g/s, neoatopancreas, abdominal muscle.
2006	Hatakeyama, S. and M		Ecotoxico Environ Saf 05 341 350	Moina mecrocopa Daphnia magna			10 2			ED28	Water	Whole Body Whole Body	Juvenile	Southwestern to south-central Carada Northwestern to north-central US, ponds small lakes, clear and weedy waters Not Specified		F2 neonales, Multi generational study writere adults are exposed to same concentration. Data further partitioned into 9%,
1986	Halakeyama, S. and M Guan R, W.X Wang Mirenda RJ		Ecotoacci Environ Sal 05 341 350 Erreron Pollut 141 343-352 Arch Environ Contam Toaccol 15 401 407	Moina mecrocopa Caphrus magna Orconectes writs	Water bes Craylsh	Cadmum	10.3	MG/KG	Growth					Southwestern to south-central Canada Northwestern to north-central US, ponds small lakes, clear and weedy waters	Feeds on algae and similar organisms	F2 neonales. Multi-generalizmal study writers adults are exposed to same concentration. DMA wither partitioned into groups of the partitional into groups of the partition of t
1986	Hatekeyama, S. and M Guan R. W.X Wang Mirende R.J Sundelin, B	M Yasuno	Ecotoacca Emilion Saf 05 341 350 Environ Pollut 141 343-352	Moina mecrocopa Daphnia magna	Water bea	Cadmidm	10.3	Мажа	Growth					Southwestern to south-central Canada Monthwestern to north-central US, ponds small lakes, clear and weedy, waters Not Specified Not Specified Hollands, coastal maurine mainly bracketh rakes and eel usines, manne-glands (elect takes.	Feeds on algae and similar organisms	F2 neonales. Multi-generalizmal study writers adults are exposed to same concentration. DMA wither partitioned into groups of the partitional into groups of the partition of t
1983	Halakeyama, S. And M Guan R. WX Wang Mirende RJ Sundelin, B Haugers EHW T Jage MHS Krabk AJ Hendrid	M Yasuno er P Creyghlon nks, NM Van	Ecotoeco Environ Sal 05 341 350 Enveron Poliut 141 343-352 Arch Environ Confirm Toecol 15 401-407 Mar Bod 74, 203-712 (1885)	Monte macrocopa Oaphina magna Oiconecles withs Monoporeis after 5	Water bea Gray(sh Amphipod	Cadmium Cadmium	10.3	MG/KG 2 MG/KG	Growth	LD74	Water	Winole Body		Southwestern to south-central Canada Monthwestern to north-central US, ponds small lakes, clear and weedy, waters Noi Specified Hotelcic, coastal marine mainly bracketh witers and estimates and estimates, marine-glacial role:	Feeds on pligast and similar organisms Not Specified	F2 neonales. Multi-generalizmal study writers adults are exposed to same concentration. DMA wither partitioned into groups of the partitional into groups of the partition of t
1983	Hatekeyama, S. and M Guan R. W.X.Wang Mirende RJ Sundelin, B Haugers EHW T Jage	M Yasuno ar F Crayghton riks, NM Van	Ecotoacci Environ Sal 05 341 350 Erreron Pollut 141 343-352 Arch Environ Contem Toecci 15 401 407	Moina mecrocopa Caphrus magna Orconectes writs	Water bes Craylsh	Cadmum	10.3	MG/KG	Growth	LD74	Water	Winole Body		Southwestern to south-central Canada Monthwestern to North-central U.S. ponds small lakes, clear and weedy, waters Not Special Hotelcc, coastal moune marily bracksh dates and elsoheres, marine glacel (sact lakes Southwestern to south-central Canada,	Feeds on pligast and similar organisms Not Specified	F2 neonales. Multi-generalizmal study writers adults are exposed to same concentration. DMA wither partitioned into groups of the partitional into groups of the partition of t

Table E-2 ERED Results for Benthic Organisms: Cadmium

Year	Author	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc_Wel	Conc_Units	Effect Class	Toxicity Measure	Exposure Route	Species Body Part	Species Start Lifestage	Species Habitet	Species Feeding Behavior	Commonite
\vdash													Southwestern to south-central Canada Northwestern to north-central US, ponds.		
1983 V	erard JF, JM Jouany, R Truhaut P	Cotoxicol Environ Sal 07 43-52	Daphnia magna	Water lies	Cadmium		MG/KG	Mortality	LD <u>80</u>	Ingestion	Whole Boxty	NA.	small lakes, clear and wardy waters	Feeds on algae and samilar organisms	Fed Cadmium exposed Chlorete vulgaris
1989 B	rown AF, D. Pascoe	Appl. Ecol 28:473-487	Gammarus pulex	Amphipod	Cadmium	11 77	MG/KG	Mortality	LO97	Water	Whole Body	Adult	Not Specified Southwestern to south-central Canada.	Not Specified	Uninfected G. pulex
	arala C SJ Markich: DJ Baird AMVM]].	ì		1		Northwestern to north-central US, ponds.		
2002 5	oares rown AF, D. Pascoe	Aquat Toxicol 51 143 154 J Appl Ecol 25.473-487	Daphrika magria Gammarus pulex	Water Rea Amphipod	Cadmium	12 09	MG/KG MG/KG	Mortality Mortality	LD90	Water	Whole Body Whole Body	Juvenile	smail lakes, clear and woody waters Not Specified	Feeds on algae and similar organisms Not Specified	clone S-28 Inlected G pulex
Γ													Southwestern to south-central Canada, Northwestern to north central US, ponds.		
2002	larate C SJ Markich DJ Baird AMVM	Aquat Toxicol 61 143-154	Daphnia magna	Welet Res	Cadmium	12 2	MG/KG	Mortality	LD50	Combined	Whole Body	Juvenile	small lakes, clear and weedy waters	Feeds on algae and similar organisms	clone G-62
									1				Widely distributed in North America in permanent bodies of water with submerged		Tap Water + Sediment & Exp. Conc. are
1991	Boigmann U, WP Norwood, IM Babined	Can J Fish Agust Sci 46 1065-1060	Hyalella agecu	Amphipod - Freshwater	Cadmium	12 4	MG/KG	Mortality	NOED	Waler	Whole Body	Embryo	vegetation	Detrinore	nominal concentrations Reised Cadmium concentration with
															Raised Cadmium concentration with additional Disolved Organic Cartion
2001	les, J., A.D. Evans, G.C. Balch	Bull Environ Contam Toxicol 66 484-491	Hydropsyche sp.	Net spinning Caddisliy	Cadmium	12 4	MGKG	Growth	NOED	Water	Whole Body	Larvei	Not Specified	Not Specified	Weight
							į.			ļ			Southwestern to south-central Canada Northwestern to north central US, ponds		FS neonales, Multi generational study where adults are exposed to same
2006	Suan R, WX Wang	Environ Pollul 141.343-352	Daphnia magna	Water fee	Cadmium	13 28	MG/KG	Growth	ED46	Water	Whole Body	Juvenile	small takes, clear and weedy waters	Feeds on algae and similar organisms	concentration
) 1	Barata C, SJ Markich DJ Baird, AMVM							1					Southwestern to south-central Canada Northwestern to north-central US, ponds,		
	Soares	Aqual Toxicol 61.143-154	Daphnia magna	Waler fee	Cadmium	136	MG/KG	Mortality	LD50	Combined	Whole Body	Juvanile	small laxes, clear and weedy waters	Feeds on algae and similar organisms	clone G 82 No significani increase in mortality Feed
1 1		Arch Environ Contam Toxicol 08.449-456	Cambarus laliManus	Crayfish	Cadmium	141	MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Streams, lakes, swamps, North Carolina to Florida	Feeds on both plant and animal material	contaminated with 0.17 ug Cd/g
14.2	map, arr, ampf, arr, transmit, green								1				Widely distributed in North America in		10 % Tap Water • 90% glass-distriled Water Not significantly different from the
1991	Borgmann U, WP Norwood, IM Babirad	Can J Fish Aqual Sci 48 1055-1060	Hyalella szieca	Amphipod - Freshwaler	Cadmium		MG/KG	Mortality	E(150	Water	Whole Body	Embryo	vegulation	Detrilivore	other measured EC50 values
1										i			Wigely distributed in North America in permanent bodies of water with submerged		10 % Tap Water + 90% glass-distifled Water Exp_Conc are nominal
1981	Borgmann U, W.P. Norwood, IM Babirad	Can J Fish Aqual Sci 48 1055-1060	Hyaiolia szlecs	Amphipod - Freshwater	Cadmium	15	MG/KG	Mortality	LOED	Water	Whole Body	Embryo	vegetation	Detrilware	concentrations.
															Reised Cadmium concentration without additional Disolved Organic Carbon
2001	iles, J. R.D. Evans, G.C. Baich	Buil Environ Contam Toxico 66.484-491	rłydiopsyche sp.	Net-spinning Caddistry	Catmum	15 (можо	Growth	NQED_	Water	Whole Body	Larvai	Not Specified	Not Specified	Wieght
1-1		Environmental Health Perspectives, Vol					1	1		l					Significant decrease in weight. Residue value taken from graph and is approximate
1986	Jenkins, K.D. and B.M. Sanders	65, pp 205-210,	Nearthes areneceodentata	tveantres	Cadminum	. 161	MG/KG	Growth	LOED	Absorphon	Whole Body	Adut.	Not Specified	Feeds or living and dead simmals	Radiotracer study Data further partitioned into gill,
					ļ.		1	1		1	1				hepatopancreas, abdominal muscle
				L	Cadmium		4 MG/KG		LD100	Waler			Not Specified	Not Specified	carapace, antennal gland - gill had the
1986	Mirenda RJ	Aich Environ Contam Toxcol 15 401 407	Urconecies viries	Crayfish	C MOTHUM	169	+ MU/KG	Mortanty	LDIO	Water	Whole Body	Acui	Widely distributed in North America in	Noi Specined	highest accumulation Tap Water + Sediment A Not significantly
		Can I Fash Assert Co. 40 4055 1050	Hyalmia azieca	Amphipod_Freshwater	Castroum	.,,	MGKG	Monates	F-050	Water	Whole Body	Embryo	permanent bodies of water with submerged vegetation	Danwinge	different from the other measured EC50
1991	Borgmann U, W.P. Norwood, IM Babirad	Can J Fish Agual Sci 48,1055-1060	rryamma actoca	PATRICIO TIESTIMENE	- Augustan		ZINGING	Inchianty.	15030	77.65	1916-# BUU	Entryc	Southwestern to south central Canada	Otherwise	F4 neonales, Multi generational study,
2006	Suan R, WX Wang	Environ Pollut 141 343-352	Daphnia magna	Water flea	Cadmium	17.3	MG/KG	Growth	E037	Water	Whole Body	lissante	Northwestern to north-central US ponds small lakes, clear and weedy waters	Feeds on algae and similar organisms	where adults are exposed to same concentration.
2000	Juan N, 11 A Traing	Environmental 141 545 634	Compression Compre		O CONTRACTOR OF THE PARTY OF TH			-	EBS		Transaction of the second	COTO-MIC	Widely distributed in North America in	eeds on again and an anguments	
1091	Borgmann U. WP Norwood, IM Babirad	Can J Fish Aqual Sci 48 1055-1060	Hyalotta azteca	Amphipod - Freshwater	Cadmium	17.	4 MOZKO	Mortality	OED	Water	Whole Body	Embryo	permanent bodies of water with submerged vegetation	Detritivore	Tap Water + Sediment A Exp_Conc are nominal concentrations
							1		1				Widely distributed in North America in		
2005	Stanley, JK, BW Brooks, TW LaPoint	Environ Tox & Chem 24 902-908	Hyalella azieca	Amphipod Freshwater	Gadmrum	18 4	a MG/KG	Growth	NOED	Water	Whole Body	Adulf	permaneni bodies ol water with submerged vegetation	Detritivore	mesocos/m
													Widely distributed in North America in		
2005	Stanley, JK, RW Brooks, TW LaPoint	Environ Tox & Chem 24 902 908	Hyalella azleca	Amphipod Freshwater	Cadmium	18 4	MG/KG	Reproduction	NOED_	Water	Whole Body	Adult	permanent bodies of water with submerged vegetation	Delitityora	mesocosm
															Dale further partitioned into gift, hepatopancreas, abdominal muscle
1 1			_				1	1			1	ļ			carapace antennal gland gift had the
1986	Mixenda RJ	Arch Environ Contam Toxicol 15 401-407	Orconecies virts	CrayAsh	Cadmium	18 7	4 MG/KG	Mortality	LD100	Waler	Whole Body	Adult	Not Specified Widely distributed in North America in	Not Specified	highest accumulation Tap Water + Sediment B Not significantly
		Can I East Amend Served sort 1040	Hugherta a state	t-shoul Freehouses	Cadmium		2 MG/KG	Monaky			W B		permanent bodies of water with submerged		different from the other measured EC50
ιι		Can J Fesh Aqual Sci 48 1055-1060	Hyalgia arieca	Amphipod Freshwater				MUTANLY	ED50	Water	Whole Body	Embryo	vegetation	Delnivore	values
1981	Halakeyama S. M Yesuno	Ecoloscol Environ Sal 05 341-380	Moins macrocops	Cladoceran	Cadmium	- 2	o MG/KG	Reproduction	ED16	Ingestion	Whole Body	Other	Not Specified	Not Specified	Food is Cadmium fed Chlorella sp No Reproduction After 12 Days Residue
1981	Halakeyama, S and M Yaşuno	Ecoloxicol Environ Sal 05 341-350	Morna macrocopa	Ciadoceran	Cadmium	2	MG/KG	Reproduction	ED100	Ingestion	Whole Body	Lerval	Not Specified	Not Specified	6 days
1981	Hatakeyama, S and M Yasuno	Ecological Environ Sal 05 341 350 Ecological Environ Sal 05 341-350	Morns macrocopa Morns macrocopa	Cladoceran Cladoceran	Cadmium	- 2	MG/KG	Growth	LOED LOED	Ingestion	Whole Body Whole Body	Larval	Not Specified Not Specified	Not Specified Not Specified	Reduced length Residue at 6 days. Reduced Survival Residue at 6 days.
1990	Heinis F. Tunthermans K.R. and W.R.	Aquat Toxicol 16 73-86		Midge	Cadmium		o MG/KG	Growth	NOED	Absorption	Whole Body		Not Spacified		No significant difference in larval weight o
1990	UMAII)	reques TORICOTTO 73-00	Glyptolendipes pallens	T-Mag S	C#OrreUM	† '	1	GOWIN	NOED	-coscrption	Pr nove sody	Larva	Widely distributed in North America in	Not Specified	population biomass
2006	Stanley, JK, BW Brooks, TW LaPoint	Environ Tox & Chem 24 902-908	Hyalelia aziece	Amphipod - Freshwater	Cadmium	20	7 MG/KG	Growth	NOED	Water	Whole Body	Ania	permanent bodies of water with submerged vegetation	Detriliyote	Lab efficient
2000					1	1	T	1	100,000	1	1	1	Widely distributed in North America in		
2005	Stanley JK, BW Brocks, TW LaPoint	Environ Tox & Chem 24 902-908	Hyaleta azleca	Amphipod Freshwater	Cadmium	20	7 MG/KG	Reproduction	NOED	Water	Whole Body	Adull	permanent bodies of water with submerged vegetation	Delinivore	Lab effluent
							1						Widety distributed in North America in		
2005	Stanley, JK, BW Brooks, "W LaPoint	Environ Tox & Chem. 24 902-908	Hyaretta azieca	Amphipod Freshwater	Cadmum	20 9	4MG/KG	Growth	NOED	Water	Whole Body	Adult	permanent bodies of water with submerged regeration	Detrinore	mesocosm
													Widely distributed in North America in permanent bodies of water with submerged		
2005	Stanley, JK, BW Brooks, TW LaPoint	Environ Tox & Chem 24 902-908	Hyalelia Azteca	Amphipod Freshwaler	Cadmium	20 9	4 MG/KG	Reproduction	NOED	Water	Whole Body	Adult	vegelation	Delrevore	mesocosm
1 1			_		l	Į	Į.						Widely distributed in North America in permanent bodies of water with submerged		
	Sienley, JK, BW Brooks, TW LaPoint	Environ Tox & Chem 24 902-908	Hymelia azieca	Amphipod - Freshwater	Cadmium	20 9	4MG/KG	Reproduction	NOED	Water	Whole Body	Adull	vegetation	Detrilivore	mesocosm
		Water Res 14 1605-1611	Garrymanus pujex	Amphipod	Cadmium	2	2 MG/KG	Mortality	LD100	Ingestion	_		Not Specified Sand and muddy sand bottoms of intertide	Not Specified	Exposure Conc ranged from 150-170 Animals held 121 d, significantly different
1993	Meador JP	J Exp Mai Biol Eco	Echaustonus estuarius	Amphipod	Cadmium	3	2 MG/KG	Mortality	LO50	Water	Whole Body	Adult	zones, to about 50 h	Omnivore-plants, definius	then lest wishorter holding time
1979	Thorp, J.H., Glesy, J.P., Wingnier, S.A.	Arch Environ Contam Toxoco: 08 449-456	Cambarus latimanus	Crayfish	Cadmium	2	2 MG/KG	Mortaley	LOED	Combined	Whole Body	Actuil	Streams lakes, awamps, North Caroina to	Feeds on both plant and animal malerial	Significant increase in mortality. Feed contaminated with 0.17 up Cd/g.
					T	Γ	1-	T	T			-	T	- secs or toni pien and white maight	No significant difference in length and
1979	Thorp, J.H. Glesy, J.P., Wineritet, S.A.	Arch Environ Contam Toxocol 08 449-456	Cambarus latimanus	Crayfish	Cadmium	2	2 MG/KG	Growth	NOED	Combined	Whole Body	Adult	Streams, lakes, swamps, North Carolina to Florida	Feeds on both plant and animal material	weight. Feed contaminated with 0.17 ug. Cd/g.
	Dillon TM	Army Corps of Engineers Report Technics: Report, 0-84 2	Cambandee	Crayfish	Cadmium	22	MG/KG	Growth	NOED	1	1	1	ì	_	
1904			CO-COMPANY	Craynet	Catarinum	144	murku .	Grown	NOKU		 		Not Specified Widely distributed in North America in	Not Specified	Thorp et al., 1979
1901	Borgmann U Norwood, W.P. and IM Bebriad	Can J Fish Aqual Sci 48 1055-1060	Hyaleka azleca	Amphipod Fieshwater	Cadmium	,	змс/кс	NA.	LOSED.	Isoselies	Maria 6-4:	l	parmanent bodies of water with submerged	1	L
1,591		- 130 repres 54/ 16 1035/1000	1	PARTICIPANT I TESTINGE	- Carrier		SAMOING.	·	NOED	Ingesiton	Whole Body	Imparure	Widely distributed in North America in	Detrilivore	Tap Water
190	Borgmann, U Norwood W P and M Babrad	Can J Fish Aquel Sci 48 1055 1060	Hyalona ageca	Amphipod _Freshwater	Cadmium) .	3 MG/KG	NA.	NOED	Ingestion	Whole Body	Immalure	permanent bodies of water with submerged vegetation	Coledona	Ten Mater Wat 0 5 COTA
					1+40			1.45	(NOED	L-19482000	Technological County	In mature	Tacheranes)	Delrawore	Tap Water With 0.5 um FDTA

Table E-2 ERED Results for Benthic Organisms: Cadmium

Year	Aulhor	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc_Wet	Conc_Units	Effect Class	Toxicity Measure	Exposure Route	Species Body Part	Species Start Lilestage	Spacies Habital	Species Feeding Behavior	Comments
+				 	 			 	 				Widely distributed in North America in		
2005	lanky, JK, BW Brooks, TW LaPoint	Environ Tox & Chem 24:902-908	Hyaleta azteca	Amphipod - Freshwaler	Cadmium	24.81	MGKG	Growth	NOED	Water	Whole Body	Adult	permanent bodies of water with submerged vegetation	Detritiyore	Lab reconstituted water
2003	talling, JK, BH Brocks, 111 Car Oliv	CHANGE OF THE PARTY OF THE PART		M. E. S. S. S. S. S. S. S. S. S. S. S. S. S.	-	1.0							Widely distributed in North America in		
2005	lanley, JK BW Brooks, TW LaPoint	Environ Tox & Chem 24 902-908	Hyalella aziece	Amphipod - Freshwaler	Cadmium	24.81	MG/KG	Reproduction	NOED	Water	Whole Body	Adust	permanant bodies of water with submerged vegetation	Delranore	Lab reconsilized water
200.0	away, or by blood, in tall one	Control Control Control	1,000										Widely distributed in North America in		
2005/5	itaniey, JK, BW Brooks, TW LaPoint	Environ Tox & Chem 24,902-908	Hyalella azieca	Amphipod - Freshwaler	Cadmium	25.04	MG/KG	Growth	NOED	Waler	Whole Body	Adult	permanent bodies of water with submerged vegetation	Delrayore	Lab efficent
	na ney, srt, bir (seems, 177 car see		7										Widely distributed in North America in		
2005	Stanley JK, BW Brooks, TW LaPoint	Environ Tox & Chem 24 902-908	Hyslelis azieca	Amphipod - Freshwater	Cadmium	26.04	MG/KG	Reproduction	NOED	Waler	Whole Body	Adull	permanent bodies of water with submerged vegetation	Detailyore	Lab efluent
- [1					1	T						Plastic enclosures within take-
1005	Coullard Y PGC Cambell A Tessier J Pellerin-Massicotte, JC Auclair	Can J Fish Aquat Sc: 52 690-702	Anodonia grandis	Freshwater mussel	Cadmum	25.8	MG/KG	Growth	ED290	Water	Whole Body	Aguit	Not Specified	Noi Specified	Metallothionen, Control group rative to it poliuted lake
	Bright Resident, 50 House					1		1							Broaccumulation and effects measured from different experiments run under sim
					1					ł			ĺ		conditions Data retrieved from
						1						į			amaigamation of % mortalities from effec
						1			1						study and bioaccumulation at those times/concentrations in accumulation
2004	ledeker ES, R Blust	Environ Sci Tech 38 537-543	Tub-lex tub-lex	Olgochaele sp	Cadmum	25 85	MG/KG	Mortaky	LD20	Waler	Whole Body	Adult	Not Specified	Not Specified	Study
1990	Heinis, F. Timmermans, K.H., and W.R.	Aqual Foxecol 16 73-88	Glyptolendipes paliens	Midge	Cadmium	2	MGKG	Growth	LOED	Absorption	Whole Body	Larval	Not Specified	Not Specified	Significant decrease in isrval weight and population biomass
	Immermans KR W Peelers and M						MG/KG		1.051	Water					
1992	Tonkes Wright DA, JW Fraun	Hydrobiologia 241.119-134. Arch Enwron Contam Toxicol 10 321-328	Chironomus ripărius	Amphipod	Cadmium Cadmium		MG/KG	Mortality	LD5	Water	Whole Body Whole Body	Larvál	Not Specified Not Specified	Not Specified	Trealment had 200 mg/L calcium added
1978	Speher RL, RL Anderson, JT Flandi	Environ Pollut 15 195-208	Physa sp.	Snau	Cadmium	21	MG/KG	Survival	ED84	Water	Whole Body	Adult	Not Specified	Not Specified	
1991	Ahsanutiah M, AR Williams	Mar Biol 108 59-65	Alforchestes compressa	Amphipod	Cadmium	21	MG/KG	Survival	LOED	Water	Whole Body	Juvenile	Not Specified	Not Specified	Data lunher partitioned into giff,
							1			!	1				hepalopanorgas abdominal muscle
1000	Milenda RJ	Arch Environ Conlam Toxicol 15 401-407	Orcopartos vinils	Crayhsh	Cadmium	28.4	6 MG/KG	Mortanty	LD100	Water	Whole Body	Actua	Not Specified	Not Specified	carapace antennel gland giff had the highest accumulation
1200	THE NO. IN	Pre-1 Caratori Continue Towner 13 401-407	G. GG. ACIES FILING			100	1	- Arienty		-			Widely distributed in North America in		
	Borgmann U, WP Norwood, IM Babirad	Con 1 Fash Assess Co. 49 1055 1000	Hyaleta azteca	Amphipod Freshwater	Cadmium		MG/KG	Mortality	€050	Water	Whole Body	Embryo	permanent bodies of water with submerged vegetation	Detnitivore	Tap Water + Sediment B Exp. Conc are nominal concentrations
1991	Sorgmann U, WP Norwood, IM Babrad	Can 3 Fish Aquai Sci 48 1055-1060	Priyateria azteca	Ampriipod Presnyster	Cagmium	29	MORG	Mortality	EDSU	W Ziel	Whole Body	Emoryo	Migsty distributed in Hority America in	Denilore)
ll		L			<u> </u>	l		1			L		permanent bodies of water with submerged	}	Tap Water + Sediment B Exp_Conc are
1991	Borgmann U, WP Norwood, IM Babrad	Can J Fish Aqual Sci 4B 1055-1060	Hyalelia azleca	Amphipod Freshwater	Cadmium	29	#MG/KG	Mortality	ED50	Water	Whole Body	Embryo	vegetation	Delinivos	nominal concentrations PCRs - 41 512 60 68 91 99, 104, 112
		1		1	1						i		ì	1	115, 126, 143, 153, 169, 184 and 193 in
		İ						į			ł		İ	1	moture with equal amounts of each. Des
1 1		1	1	1	1	1	1	i	1	1	}	1	\	1	clean water prior to biocons analysis
1990	Henris, F. K.P. Timmermans, W.P. Swain	Aquat Toxicol 16 73-85	Glyptolendipes pallens	Midge	Cadmium	3	o MG/KG	Growth	LOED	Water	Whole Body	Larvai	Not Specified	Not Specified	Weight PCBs - 41, 512, 60, 68, 91, 99 104 112
lí			İ									1			115 126 143, 153, 169, 164 and 193 in
												1			mixture with equal amounts of each. Dea
1						l			1						clean water prior to bioconc analysis
1990	Heinis, F. K.R. Timmeimans, W.R. Swain	Aqual Toxicol 16:73-85	Glyplotendipes pallens	Midge	Cadmium	3	MG/KG	Growth	NOED	Waler	Whole Body	Larva:	Not Specified Widely distributed in North America in	Not Specified	Biomass
l i	Borgmann, U Norwood W P and IM	ŀ								ļ			spermaner bodies of water with submerged		
	Babinad	Can J Fish Aquat Sci 48 1055-1060	Hyalella azieca	Amphipod - Freshwater	Cadmium	3	0 MG/KG	NA	LOED	Ingestion	Whole Body	Immeture	vagetation	Denistryore	Tap Water
1982	Poulsen, E. H.U. Rilsgard and F. Mohlenberg	Mar Biol 66, 25-29 (1982)	Mytilus edulis	Mussel	Cadmium	3	MG/KG	Growth	NOED	Combined	Whole Body	Adult	Intertidal Zone on rocks: pivings and flars may extend to depths over 40 fl	Filter plankton, dialores, bollon vegetation	
1 7	Poulsen, E. H.U. Riisgald and F. Mohlenberg	Mar Bol 68, 25-29 (1982)	Mylilus equirs	Mussel	Cadmium	١.	омсика	Mortality	NOED	Combined	Whole Booy	Adult	Intertidal zone on rocks prings and flats.		D. D. D. D. D. D. D. D. D. D. D. D. D. D
-		Army Corps of Engineers Report Technical	4		Caomon	<u>├</u>	1	MOTALLY		Conditate	(Whole Bridy	Agut	may extend to depths over 40 ft. Intertidal zone on rocks, plings and fials.	Firter plankton, dietoms, bollom vegetalion	(Highest Bony Human Hepoted
1984	Diffon TM	Report, D-84-2	Myhius eduks	Mutsel	Cadmium	30	MG/KG	Growth	NOED	 -	 		may extend to depths over 40 ft	Filter plankton, diatoms, bollom vegutation	Poursen et al, 1982 Water, sed, benthic inverts @ 12 lakes
1						ļ						1	Widely distributed in North America in		6 6 8 3 Lab lests w/seds and Hyaletta
	Borgmann U WP Norwood TB	Can J Fish Aquat Sci 58 950-960	Hyalolia azteca	Arthhood Creshumbs	Caomium	30 35	MG/KG	Mortality	LD25	Water			permanent bodies of water with submerged	 	Beakers lowered pH to 4 used imhoft
2001	Reyrioldson, and F Rosa	Cars Fish Agoat Sci Sc 950-950	riyawia aaw.a	Artiphipod - Freshwater	Caomium	30.39	- Turku	peortality	1025	11.40	Whole body	Addi	regetation Introduced spread to all Great Lakes	Delritivore	cones instead
]]			ì]			1	1)	some invers in Allantic Mississippi	L	1
1993	Mersch, J. E. Morhain, and C. Mouvel	Chemosphera 27(8) 1475-1485	Dreissena golymorpha	Mussel - Zebra	Cadmium	3	2 MG/KG	Mortanty	NOED	Combined	Whole Body	NA .	drainage basins; allaches to rocks, other thard surface	Filter leeder phytoplankton, bacteria fine definal particles	No increase in mortality
		1				Ī — —		1		T	T		Widely distributed in North America in		
1991	Borgmann, U Norwood W P and IM Babired	Can J Fish Aqual Sci 48 1055-1060	Hyalella azleca	Amphipod Freshwater	Cadmium] 3	2 MG/KG	NA	NOED	ingestion	Whole Body	Immature	permanent bodies of water with submerged vegetation	Delitivore	Tap Water With 20mg/i Humic Acid
\Box						T .			T	T	1	1	Widely defributed in North America in		The state of the s
2005	Slanley, JK, BW Brooks, TW LaPoini	Environ Fox & Chem 24 902 908	Hyalella azreca	Amphipod Freshwaler	Cadmium	37 1	8 MG/KG	Growth	ED20	Water	Whole Body	Adut	permanent bodies of water with submerged vegetation	Delntivore	Lab reconstuled water
					T		1	T				1	Widely distributed in North America in		Car Constitution manage
2005	Slanley, JK, BW Brooks TW LaPoint	Environ Tox & Chem 24 902-908	Hyzielia azieca	Amphipod Freshwaler	Cadmium	37 1	B MG/KG	Reproductio	n NOED	Water	Whole Body	Aguil	permanent bodies of water with submerged vegetation	Datritwore	Lab reconsituted water
[1		1	1	1	1	1	T			Widely distributed in North America in		CED INCOMINGED WEED
1591	Borgmann U Norwood W P and IM Babrad	Can J Fish Aqual Sci 48.1055-1060	Hyalena azteca	Amphipod - Freshwater	Cadmum		MGKG	Mortality	ED50	Ingestion	Whole Body	Immature	permanent bodies of water with submergad vegetation	Datriivore	Tap Water
1 1		1000	1		7.00	 	1		1		dia gody	aisia	Widely distributed in North America in	- Indiana	1 mp 77 or Mr
1991	Borgmann, U. Norwood W.P. and I.M. Babrad	Can J Feh Aqual Sci 48 1055-1060	Hyalella azieca	Amphipod Freshwater	Cadmun	.	9MG/KG	NA.	LOED	Ingestion	Whole Body	(mmature	permanent bodies of water with submerged	Detriliwore	Tan Minter With 20mod Livery Ac-
1 3			1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	Jan. Gr	1 - 1	2,500	- P			Whole Body		Widely distributed in North America in	Cet-Hote	Tap Water With 20mg/l Humic Acid
1961	Borgmann U Norwood W P and IM Babinad	Can J Fish Aquat Sc: 48 1055 1060	Hyalelis azteca	Amphipod - Freshwaler	Cadmium	Ι.	g MG/KG	NA.	LOED	Ingestion	Whole Body	Immalure	permanent bodies of water with submerged	Delranose	T Web- Web 0.5 - 5074
1001	JEGILED	DE-151 SIT AGOST SET 46 1625 1660	Trywonia aziaca	Aliganipos - riesniwater	Caumo	 	y morku	<u> </u>	LOED	in question	W note Body	Immaiure	Widely distributed in North America in	Delrayore	Tap Water With 0.5 um EDTA
2000	Stanley, JK, BW Brooks, TW LaPoint	Environ Tox & Chem 24:902-908	Husialia artera	Amphiport - Creeturates	Cardanii		e MG/KG	0.00	NOED	Lune.			permanent bodies of water with submerged	1	1
5000	JIN-101, JAY, DAY DEDOKS, 188 F9/01/1	Environ rux a Chen 24.902-908	Hyalelia azteca	Amphipod - Freshwater	Cadmium	414	VI-G/AG	Grown	MOED	Waler	Whole Body	Adull	Widely distributed in North America in	Detritivore	Lab reconsituted water
1	Crante: N. Dist Burner Tell (42)	F T 4 Ch 04 000 000				l .		L .	Ĺ	L	L .	1.	permanent bodies of water with submerged	1	1
2005	Stanley, JK, BW Blocks, TW LaPoint	Environ Tox & Chem 24,902-908	Hyaletta azieca	Amphipod · Freshwater	Cadmium	414	8 MG/KG	Reproduction	n NOED	Waler	Whole Body	Adult	vegela) of	Detritivare	Lab reconsituted water Model predicted output value: 032 umo
		1	1	1		1	1	{	1	1	}	1	\	{	ww (35 97 mg/kg) uptake rates lollowe
			1	İ				l				1		1	Michaelis-Menten uptake model (2
			1										1	1	compartment) Ensurink daphnid LD50 0.98 umol/g www Bolgmann, H azieca
	Aecteber ES, R Blust	Environ Sci Tech 38 537-543	Tubriex tubriex	Oligochaele sp.	Cadmium		e MG/KG	Mortality	LD50	Waler	Whole Body	NS	Not Specified	Not Specified	LD50= 0.68-0 17 umol/g ww
L #004	Redeber ES, R Blust	Environ Sci Tech 38 537-543	Tubriex lubriex	Oligochaete sp.	Cadmium	415	e MG/KG	Mortality	LD50	Waler	Whose Body	INS	Not Specified	Not Specified	

Table E-2 ERED Results for Benthic Organisms. Cadmium

Year	Author	Publication Source	Species Scientific Name	Species Common Name	Analyte Hame	Conc_Wet	Conc_Units	Effect Class	Foxicity Measure	Exposure Route	Species Body Part	Species Start Lifestage	Species Habitat	Species Feeding Behavior	Commente
							,								Bioaccumulation and effects measured from different experiments run under similar
- 1				ļ			}								conditions. Data retrieved from
- (Į.								ì						amaigamation of % mortalities from affects study and broaccumulation at those
							ĺ.								times/concentrations in accumulation
2004	Redeker ES, R Blust E	Enveron Sci Tech 38 537 543	Tub-lex lub-lex	Oligochaele sp	Cadmium	41 59	MG/KG	Mortality	LD50	Water	Whole Body	Adult	Not Specified Widely distributed in North America in	Not Specified	study
\ \	i			}	i. '		l			1 .		ł	permanent bodies of water with submerged		
2005	Stanley, JK, BW Brooks, TW LaPoint	Environ Tox & Chem 24 902-908	Hyalella azieca	Amphipod - Freshwater	Cadmum	41.8	MG/KG	Growth	NOED	Waler	Whole Body	Adus	vegetation Widely distributed in North America in	DetriliyOte	Lab reconstluted water
1	!						l						permanent bodies of water with submerged		
2005	Stenley, JK, BW Brooks, TW LaPoint E	Environ Tax & Chem 24 902-908	Hyalosa adeca	Amphipod - Freshwater	Cadmium	41.8	MG/KG	Reproduction	NOED	Water	Whole Body	Adult	Vegetalion Widely distributed in North America in	Detritivole	Lab reconstitted water
	Borgmann ∪ Norwood W P and I-M				_								permanent bodies of water with submerged		
1001	Babirad	Can J Fish Aquat Sc: 48.1055 1080	Hyaista aztecs	Ampt-god - Freshwater	Cadmium		MGKG	NA	NCED	Ingestion	Witten Body	mmeture	wegetation Widely distributed in North America in	Delitivore	Med 90% Drailfied Water
il					1.			_		L.,	l		permanent bodies of water with submerged		[
2005	Stanley, JK, BW Brooks TW LaPoint	Environ Tox & Chem 24:902-908	Hysielia azteca	Amphipod - Freshwater	Cedmium	42 92	MG/KG	Growth	NOED	Water	Whole Body	Adult	vegetation Widely distributed in North America in	Definitivore	Lab siffueni
								L	L				permanent bodies of water with submerged		l . <u></u> .
2005	Stanley, JK, BW Brooks, TW LaPoint	Environ Tox & Chem 24 902-908	Hyaiella azteca	Amphipod - Freshwater	Cadmium	42 92	MG/KG	Reproduction	NOED	Waler	Whole Body	Adult	vegetation Widely distributed in North America in	Detrimote	Lab offluerX
	Borgmann U , Norwood W P and I M						1						permanent bodies of water with submerged		
1991	Babired	Can J Fish Aquat Sci 48 1055-1060	Hysiella azteca	Amphipod - Freshwarer	Cadmum	-	MG/KG	Mortanly	ED50	Ingestion	Whole Body	Immelure	vogetation Widely distributed in North America in	Dalrnwore	Tap Water With 20mg/i Humic Acid
	Borgmann U, Norwood W P and IM									1			permanent bodies of water with submerged		_
1991	Babired Timmermans KR W Peelers and M	Can J Fish Aquat Sci 48 1055-1060	Hysiqiia azteca	Amphipod Freshwater	Cadmum	4	MG/KG	Mortality	ED50	Ingestion	Whole Body	Immalure	vegetation	Delranore	Tap Water With 0.5 um EDTA
1992	Tonkes	Hydrobiologia 241 113-134	Chiconomus ripasius	Midge	Састим	46	MG/KG	Mortaky	L268	Water	Whole Body	LEIVE	Not Specified	Not Specialed	
	Borgmann U Norwood W P and I M		1		1			1					Widely distributed in North America in permanent bodies of water with submerged		
1991	Babrad Nerwego W P and I W	Can J Fish Aquat Sci 48 1055-1060	Hyalella azteca	Amphipod - Freshwater	Cadmium	4	MG/KG	NA	NOED	Ingestion	Whole Body	Immalure	vegetation	Osintryore	Sediment A
	T				1			1 —			1			-	Increase in mortality Soft water 4.4 mg/L
1988	Abel, T and F. Bartocher	Journal of Applied Ecology, 25 223 231	Gammarus fossarum	Amphipod	Cadmium	48	MG/KG	Mortality	LOED	ingestion	Whole Body	Adult	Not Specified	Not Specified	Ca ion, pH 7.2 Artificial stream system
	Winght DA, JW Frain	Arch Environ Conter* Toxacol (0.321-328	Cammarus purgx	Amphipod	Cadmium	48	MG/KG	Mortality	LQ4B	Water	Whole Body	Adult	Not Specified Widely distributed in North America in	Not Specified	Treatment hart 20 mg/L calcium added
				1							1	İ	permanent bodies of water with submerged		l .
2005	Slanley JK, BW Brooks, FW LaPoini	Enwron Tox & Chem 24 902-908	Hyalelia azteca	Amphipod - Freshwaler	Cadmium	49.8	MG/KG	Growth	NOED	Water	Whole Body	Adult	vegelation	Dentilivore	Lab raconstituted water
	1					ł						l	Widely distributed in North America in permanant bodies of water with submerged		
2005	Slanley, JK, BW Brooks, TW LaPoini	Environ Tox & Chem 24 902-908	Hymelia azteca	Amphipod - Freshwaler	Cadmium	49.8	MG/KG	Reproduction	NOED	Water	Whole Body	Adull	vegelakon	Detrilivore	Lab reconstitted water
1	1		1	1	1	1	1	1	1	1	1	1)	1	PCBs - 41 512 60 66 91 99 104, 112 115 126 143 153 169, 184 and 193 in a
	1					1							1		moture with equal amounts of each Dead
1	l	i				l			1				<u> </u>		larvae allowed to depurate overright in clean water prior to biocont analysis
1990	Henris F K A Timmermans W A Swain	Aqual Toxicol 16 73-86	Glyptolendipes pallens	Midge	Cadmium	. 5	MG/KG	Grown	LOED	Waler	Whole Body	Larval	Not Specified	Not Specified	Biomass
			_										Widely distributed in North America in		
2005	Stanley, JK, BW Brooks, TW LaPoint	Environ Tox & Chem 24 902-908	Hyalella azteca	Amphipod - Freshwater	Cadmum	50 B	MG/KG	Growth	NOED	Water	Whole Body	Adull	permanant bodies of water with submerged vegetation	Detritiyore	Lab effluent
		•		T	T								Widely distributed in North America in		
2005	Slanley JK, BW Brooks, TW LaPoint	Environ Tox & Chem 24 902-908	Hyalella azieca	Amphipod - Freshwater	Cadmum	50 8	MG/KG	Reproduction	NOED	Water	Whole Body	Adult	permanent bodies of water with submerged vegetation	Detrinyore	Lab efiluent
								T		1			Southwestern to south-central Canada, Northwestern to north-central US, ponds,		
1983	Ferard JF JM Jouany R Truhaut P vasseur	Ecotoxicol Environ Sal 07 43 52	Daphnia magna	Water liea	Cadmium	51	MG/KG	Mortality	LD83	ingestion	Whole Body	NA .	smell lakes, clear and woody waters	Feeds on algae and similar organisms	Fed Cadmum exposed Chlorella vulgans
											1		Widely draftibuled in North America in		
2005	Stanley, JK, BW Brooks, TW (aPoint	Environ Tox & Chem 24-902-908	Hysielia azieca	Amphipod - Freshwaler	Cadmium	52 7	MG/KG	Growth	NOED	Water	Whole Body	Adult	permanent bodies of water with submerged vegetation	Delistivore	Lab eflicent
			,			1					1		Widely distributed in North America in		
2005	Stanley, JK, BW Brooks, TW LaPoint	Environ Yox & Chem 24.902-908	Hyalella azteca	Ampti-pod - Freshwaler	Cadmium	52 7	MG/KG	Reproduction	NOED	Waler	Whole Body	Adull	permanent bodies of water with submerged vegetation	Detriliyore	Lab effueni
							Ī	Г							increase in mortality. Hard Water 83-87
1968	Abel T and F Barlocher	Journal of Applied Ecology, 25 223-231	Gammarus lossarum	Amphipod	Cadmium	52	в мажа	Mortairty	LOED	Ingestion	Whole Body	Adulf	Not Specified	Not Specified	mg/L Calion pH 8.3 A/Irfcial siteam system
													}	1	
1986	Abel, T and F Barlocher	Journal of Applied Ecology, 25 223-231	Gammarus lossarum	Amphipod	Cadmiuni	53	4 MG/KG	Mortelity	LOED	Waler	Whole Body	Adult	Not Specified	Not Specified	Increase in mortality. Soft water 4.4 mg/L. Ca ion, pH 7.2. Artificial stream system.
								1		T					No increase in mortality. Hard water 83-87
1986	B Abel, T and F Barlocher	Journal of Applied Ecology, 25 223-231	Gammarus kossarum	Amphypod	Cadmun	53	MGMG	Mortality	MOED	Water	Whole Body	Adulti	Not Specified	Not Specified	mg/L Ca on pH 8.3 Artificial stream system
1981	Wright OA, JW Fram	Arch Enwron Contam Toxical 10.321-328	Gammarus pulex	Amphipod	Cadmium	58.	4 MG/KG	Mortality	LD50	Water	Whole Body	Adus	Not Specified	Not Specified	Treatment had no calcium added
1988	B senxins KD, AZ Mason	Aqual Toxicol 12 229 244	Nearthes arenaceodeniala	Nearthes	Cadmuni	60	7 MG/KG	Reproduction	n ED100	Water	Whole Body	Adult	Not Specified	Feeds on living and dead animals	# ol equs
1	8 jenkins KD, AZ Mason	Aquat Toxicol 12 279 244	Neanthes arenaceoxientala	Nestinos	Cadroum		7 MG/KG	Reproduction		Waler		Adul			
1988	B Jenkins KD, AZ Mason	Aquat Toxicol 12 229-244	Neanthes arenaceodentals	Nearthes	Cadmium		7 MG/KG	Survival	NOED	Waler	Whole Body Whole Body	Adult	Not Specified Not Specified	Feeds on living and dead animals Feeds on living and dead animals	Time pairing to laying of eggs
1	Borgmann U. Norwood, W.P. and I.M.			1		1	1	1	1	I	1		Widely distributed in North America in		
1991	Owner or remeded to be add tw	Can J Fish Aquat Sci 48,1055-1060	Hyalella azteca	Amphipod - Freshwater	Cadmium		2 MG/KG	NA	NOED	Ingestion	Whole Body	i Immature	permanent bodies of water with submerged vegetation	Detnivare	Segiment B
	1 Babirad			1		_	7						Cape Cod to Cape Halleras burrows in	T	1
					Cadmium	+	2 MG/KG	Reproduction	n ED100	Absorption	Whole Body	NA	soft substrata	Predator on small invertebrates	Reproductive failure No aggs produced Bioaccumulation and effects measured
	1 Biblined 8 Jenkins, K.D. and A.Z. Mason	Aqual Toxecol 12,229-244	Nereis arenaceodeniata	Polychaele	1				1	,		1	i .		Concession and district inggroups
		Aqual Toxicol 12.229-244	Nereis aveneceodentata	Poycraule				1		1	ł				from different experiments run under similar
		Aquai Toxecoi 12.229-244	Nereis avenaceodentata	Polycrassis						{	1				conditions. Data retrieved from
		Agual Toxicol 12.229-244	Nereis avenaceodeniata	Polycraule											
1985	9 Jenkins, K.D. and A.Z. Mason		1				uese								conditions. Data retrieved from amalgamation of % mortalities from effects study and broaccumulation at those times/concentrations in accumulation.
1985		Aquel 10secol 12.279-244	Neters are necessariled a	Oligochaele sp	Cadmium	67 45	<u>MG</u> /KG	Monality	<u>LD90</u>	Water	Whole Body	Aduli	Not Specified Widely detributed in North America in	Not Specified	conditions. Data retrieved from amalgamation of % mortalities from effects study and broaccumulation at those
1988	B Jenkins, K.D. and A.Z. Mason Redeker ES, R.Busi	Environ Sci Tech 38 537 543	Tubliex tubilex	Oligochaele sp					<u>LDe</u> o			Aduli	Widely distributed in North America in parmanent bodies of water with submerged	Not Specified	conditions. Data retrieved from amalgamation of % mortalities from effects study and bioaccumulation at those times/concentrations in accumulation.
1988	B Jankins, K.D. and A.Z. Mason Redeker ES, R.Busi		1		Cadmium		MG/KG SMG/KG	Mortality Grawth	LD90	Waler Waler	Whole Body	Aduli Aduli	Widely distributed in North America in permanent bodies of water with submerged yegolation.	Not Specified Delification	conditions. Data retrieved from amalgamation of % mortalities from effects study and bioaccumulation at those times/concentrations in accumulation.
2004	Bankons, K.D. and A.Z. Masson Recorder ES, R. Blust SStanley, JK: 8W Bhooks, TW Laikons	Environ Sc. Fech 38 537 543 Environ Tox & Chem 24 902 908	Tutifex tutilex Hydlota autoca	Cligochaele sp Amphpod Freshwafer	Cadmium	71 1	simg/kg_	Grawin		W sigr	Whole Body	Aduli Aduli	Widely distributed in North America in parmanent bodies of water with submerged vegetation. Widely distributed in North America in permanent bodies of water with submerged	Delitrivore	controls Data retrieved from managamation of its mortalists from effects study and boaccumulation at those timeseconcentrations in accumulation study. Lab efficients.
2004	Bankons, K.D. and A.Z. Masson Recorder ES, R. Blust SStanley, JK: 8W Bhooks, TW Laikons	Environ Sci Tech 38 537 543	Tubliex tubilex	Oligochaele sp		71 1						Aduli Aduli Aduli	Widely distributed in North America in parmanent bodies of water with submerged vegetation. Widely distributed in North America in	•	conditions. Data intrinsived from amalgamation of % mortalities from effects study and broaccumulation at those times/concentrations in accumulation study.

Table E-2 ERED Results for Benthic Organisms: Cadmium

Year	Author	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc_Wet	Conc_Units	Effect Class	Toxicity Measure	Exposure Route	Species Body Part	Species Start Lifestage	Species Habitet	Species Feeding Behavior	Commente
1890	Heinis, F., K.A. Turmermans, W.A. Swein	Aqual Toxccl 16 73-86	Glypiolendipes pallens	Midae	Cadmum	74	MG/KG	Mortality	NOED	Waler	Whole Body	Larvet	Not Specified	Not Spocified	PCBs 41 512, 60, 66, 91, 99, 104, 112, 115, 126, 143, 153, 169, 164 and 193 in a muture with equal amounts of each Dead tenses allowed to depurate overhight in clean water prior to biscome analysis.
	1												Widely distributed in North America in permanent bodies of water with submerced		
1991	Borgmann U Norwood, W P and IM Babiled	Can J Fish Aquat Sci 48 1055-1060	Hyaleta arteca	Amphipod Freshwater	Cadmium	76	MG/KG	NA.	LOED	Ingestion	Whole Body	Immature	vegetation	Detritivote	Med 90% Distriled Water
	Borgmann U Norwood W P, and I M				l	ŀ			1				Widely distributed in North America in permanent bodies of water with submerged		
1991	Babirad	Can J Fish Aquat Sci 48 1055-1060	Hyalella azteca	Amphipod - Freshwater	Cadrinum	79	MG/KG	Mortality	ED50	Ingestion	Whole Body	Immalure	vegetation	Derritwore	Med 90% Dishilled Water
	Timmermans KR W Peeters, and M Tonkes	Hydrobiologia 241 119-134	Chironomus riparius	Midge	Cadmium	80	MG/KG	Growth	ED45	Water	Whole Body	Larval	Noi Specified	Not Specified	
1 [Meador JP	J Exp Mar. Biol Eco	Eohaustonus estuarius	Amphipod	Cadmium	 86	MG/KG	Mortality	LD50	Water	Whole Body	Adult	Sand and muddy sand bottoms of intertidal zones, to about 50 ft	Omnyore plants, delivius	Animals held 17 d
		TO ME DO LO											Widely distributed in North America in nermaned bodies of water with submerced		
1991	Borgmann U Norwood W P and IM Babrad	Can J Fish Aquet 5ci 48 1055-1060	Hysielia azteca	Amphipod - Freshwater	Cadmium	86	MG/KG	Mortality	E050	Ingestion	Whole Body	Immalure	Polation	Definitivore	Sediment A
	Borgmann U., Norwood W.P. and I.M.												Widely distributed in North America in permanent bodies of water with submerged		
1991	Bebuad	Can J Fish Aqual Sci 48 1055-1060	Hyalella azteca	Amphipod - Freshwater	Сафтып	87	MGKG	NA	LOED	Ingestion	Whole Body	Immature	vegetation Window restributed in North America in	Detrillwore	Sediment A
						ŀ	l		j				permanent bodies of water with submerged		
2005	Stanley, JK, BW Brooks, TW LaPoint	Environ Tox & Chem 24 902-908	Hyalella azteca	Amphipod - Freshwater	Cadmium	96.74	MG/KG	Growth	NOED	Water	Whole Body	Adult	yegetation Widely distributed in North America in	Detritivole	mesocosm
	Borgmann U Norwood, W P and IM						мажа						permanent bodies of water with submerged	Date and	C
1991	Babirad	Cari J Fish Aquat Sci 46 1055-1060	Hyalella azteca	Amphipod Frashwater	Cadmium	- 26	MUNG	Mortality	ED50	Ingestion	Whole Body	Immalure	vegetation introduced spread to all Great Lakes,	Detrinore	Sediment B
Ì	Kraak MHS M Toulesain D Levy and]]]		ĺ]	some rivers in Allantic Mississippi dreinage basins, allaches to rocks, other	Filler feeder, phytoplankton, bacteria, fine	No increase in mortality. Residue was
1994	C Davids	Environ Pollul 084,139-143	Oreissena polymorpha	Mussel - Zetra	Cadmium	100	MG/KG	Mortality	NOED	Absorption	Whole Body	Adult	hard surface	definial particles	determined from graph and is approximate
							1								Increase in mortality. Hard water 83-87 mg/L Caron. pH 8.3. Artificial stream
1988	Abel 1 and F Barlocher	Journal of Applied Ecology, 25 223-231	Gammarus fosserum	Amphipod	Cadmium	101 (MG/KG	Mortality	LOĘD	Water	Whole Body	Adult	Not Specified Introduced spread to all Great Lakes	Not Specilied	system.
ì	1	}			ł	ì	1	1			1	1	some rivers in Allantic, Mississippi		
1992	Kraak, M.H.S. D. Lavy, W.M.H. Peeters, and C. Davids	Arch Environ Contam Toxicol 23 363-369	Dreisseng polymorpha	Mussel - Zebra	Cadmium	10	малка	Mortality	LD50	Absorption	Whole Body	Adult	drainage basins alleches to rocks other hard surface	Filter feeder, phytoplankton bacieria, line detrital particles	50% Mortality in 27 days
													Widely distributed in North America in permanent bodies of water with submerged		
2005	Stanley, JK, BW Brooks, TW LaPoint	Environ Tox & Chem 24 902-908	Hyalella aztecs	Amphipod - Freshwaler	Cadmium	109.7	MG/KG	Growth	NOEO	Water	Whole Body	Adua	vegetation	Delravore	mesocosm
{					ļ	1	l l	1	1	1	1		Widely distributed in North America in permanent bodies of water with submerged		
2005	Stanley, JK, 8W Brooks, TW LaPoint Ferard JF, JM Jouany R Truhaul P	Environ Tox & Chem 24.902-908	Hyaleka azteca	Amphipod - Freshwaler	Cadmium	109 7	MG/KG	Reproduction	NOED	Waler	Whole Body	Adur	vegetation Commonolitan, Needs stable surface on	Detrinque	mesocosm
1983	VASSOUR TO SOURTY IN TURBULE	Ecotoxicol Environ Sal 07 43-52	Chlorelia vuigans	Algue - Green	Cadmium	11	MG/KG	Montality	NOED	Water	Whole Body	NA	which to drow	Not applicable	
ĺ	}					1						1	Introduced Spread to all Great Lakes some rivers in Atlantic Mississippi		
1002	Kraak MHS Dilawy WMH Peelers and C Davids	Arch Environ Contam Toxicol 23 363-369	Dreissena polymorpha	Mussel - Zebra	Cadmium		MG/KG	Mortanty	NOED	Absorption	Whole Body	Actual	drainage basins, allaches to rocks, other hard surface:	Filter leader phyloplankton, bacteria fine detrital particles	No increase in mortality
1992	ange barros	Part Elmor Someth Saco 29 300 300	Distance por morphis				1		1	nosc pice			Widely distributed in North America in		100000000000000000000000000000000000000
2005	Stanley, JK, BW Brooks, TW LaPoint	Environ Tox & Chem 24 902-908	Hyalelis azleca	Amphipod - Freshwater	Cadmium	126	MG/KG	Growth	NOED	Water	Whole Body	Adult	permanent bodies of water with submerged vegetation	Deintrycke	Lab effueni
			_				Į					_	Widely distributed in North America in permanent bodies of water with submerced		
2005	Stanley, JK, BW Brooks, TW LaPoint	Environ Tox & Chem 24 902-908	Hyalolla azleca	Amphipod - Freshwater	Cadmum	126	MG/KG	Reproduction	NOED	Waler	Whole Body	Adult	vegetation Widely distributed in North America in	Detnityore	Lab effuent
Ì		1		_	1.								permanent bodies of water with submerged	d	ļ
2005	Stanley, JK, BW Brooks, TW LaPoint	Environ Tox & Chem 24 902-908	Hyalella azieca	Amphipod Freshwaler	Cadmium	126	MG/KG	Reproduction	NOED	Water	Whole Body	Adull	vegetalion	Detritocal	Lab effuent
															PCBs 41 512 60 88 91, 99, 104, 112 115 126 143, 153 169, 184 and 193 in a mature with equal amounts of each Dead larvae 8/6/wed to deputate overnight in
1 -	Hains F, KR Timmermans, WR Swain Hains F Timmermans, KR and WR	1	Glyptolandipes pallens	Midge	Cadmium		MG/KG	Mortality	LOED	Water	Whole Body	Laval	Not Specified	Not Specified	clean water prior to biocons analysis
1990	S#ain	Aqual Toxicol 16 73 86	Glyptolendipes pallens	Midge	Cadmaim_	14	MGKG	Mortality	NOED	Absorption	Whole Body	Larvai	Not Specified Widely distributed in North America in	Not Specified	No Elect On Mortality in 96 Hours
1	L	<u> </u>	L	l	L	1	J	L					permanual bodies of water with submerged		
2005	Stanley, JK, BW Brooks, TW LaPoint	Environ Tox & Chem 24 902-908	Hyalella aztece	Amphipod - Freshwater	Cadmium	142	MG/KG	Growth	NOED	Water	Whole Body	Aduli	vegetation Widely distributed in North America in	Delirinote	Lab effueni
2004	Stanley, JK, BW Brooks, TW LePoint	Environ Tox & Chem 24 902-908	Hyalella azieca	Amphipod - Freshwater	Cadmium,	149	6 MG/KG	Reproduction	NOED	Water	Whole Body	Actua	permanent bodies of water with submerged vegetation	Deniliyora	Lab efficient
1 200			1			1	1	- September			1		Widely distributed in North America in	CAMPIO 4	FWS disorbil)
199	Borgmann U Norwood, W P and I M Babirad	Can J Fish Aquat Sci 48 1055 1060	Hyalelis azleca	Amphipod - Freshwaler	Çadmıum	14	e MG/KG	NA	LOED	Ingestion	Whole Body	Immalue	permanent bodies of water with submerged vegetation	Ogenbycke	Sediment B
						1						1	Labrador to southern New England: northern coasts of Europe and Great		
100	Carr, R.S., and J.M. Nell	Aquat Toxocol 02 319-333.	Neres vitens	Polychaele Sandworm	Cadmium	1	MGMG	Growth	NOED	Absorption	Whole Body	and a	Britain; intertidal to subtidat; under rocks in	Feeds on worms and other small	
1900	CON, 11 3, 010 3 W 148	Aqual Touch og 519-555.	Present VIIIII	Poyenare Sandworm	Cazman	†	0,40,50	Cicajii	MOEO	Absurption	W HOIR GODY	ADDIK	Introduced, spread to all Great Lakes	invertebrilles	No significant effect on weight
1	Kinak M H S D Lavy W M H Peeters						[1	some rivers in Atlantic, Mississippi drainage basins, allaches to rocks, other	Filter leader, phytoplankton pacteria, line	
1992	and C Davids	Arch Environ Contam Toxocol 23:353-359	Dreissena polymorpha	Mussel Zeora	Cadmium	15	MG/KG	Mortality	LD96	Absorption	Whole Body	Adult	hard suriace	delinial particles	96% Mortality in 27 days
1	1	1	}	}	1	1	1	i	1		,	1	}		100% Mortality in 10 days. Soft water 4.4 mg/L Ca ion, pH 7.2. Artificial stream
1 -	Abel, 1 and F Barlocher	Journal of Applied Ecology, 25:223:231 Army Corps of Engineers Report Technical	Gammarus fossarum	Amphipod	Cadmium	- 21	6 MG/KG	Mortality	LD100	Water	Whole Body	Adux	Not Specified	Not Specified	system
1964	Dilion TM	Report, D-84-2 Army Corps of Engineers Report Technical	Могла тастосора	Clarioceran	Cadmium	225	MG/KG	Growth	NOED		 	+	Not Specified	Not Specified	Hatakeyama and Yasuno, 1981
1984	Dillon TM	Report, D-84-2	Moine macrocopa	Cladoceran	Cadmium	225	MGKG	Reproduction	n NOED	L		1	Not Specified	Not Specified	Hatakeyama and Yasuno, 1981, # ol youn
2002	Gillis, PL LC Diener 7 B Reynoldson, 2D O. Dreon	Emmon Tox & Chem 21(9) 1835-1844	Chironomus ripailus	Midge	Cadmium	236	1 MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Not Specified	Not Specified	
	Gillis, P.L. L.C. Diener, T.B. Reynoldson 2 D.G.Dixon	Enveron Tox & Chem 21(9) 1836-1844	Chironomus riparius	Midge	Cadmium		MG/KG	Croudh	ED43	1			1		<u> </u>
	Cavision A.R. G.L. Phipps V.R. Mattson	i						GIOMIN .		Combined	Whole Body	Poult	Not Specified	Not Specified	Weight
	P.A. Kosisin and A.M. Coller Carlson A.R. G.L. Phipps, V.R. Maltson	Environ Tox & Chem 10 1309-1319	Helisoma sp	Snaul	Cadmium		O MG/KG	Mortality	NOED	Absorption	Whole Body	Adull	Not Specified Most of North America, Europe, Ponde.	Not Specified	No Effect On Mortality
1991	P.A. Kosian and A.M. Cotter	Environ Tox & Cham 10:1309-1319 Army Corps of Engineers Report Technical	Lumbriculus variegatus	Cligochapte	Cadmrum	31	MG/KG	Mortality	NOED	Absorption	Whose Body	Adult	lakes, on log of mud	Feeds on small animals in substrate	No Effect On Mortality
1984	Dellon TM	Report, O-84 2	Moina macrocopa	Cladoceran	Cadmium	450	MG/KG	Grown	NOED		<u></u>	L	Not Specified	Not Specified	Halakeyama and Yasuno, 1981
1984	Dillon YM	Army Corps of Engineers Report Technical Report, D-84 2	Могла тасгосора	Cladoceran	Cadmium	450	MG/KG	Reproductio	n LOED				Not Specified	Not Specified	Halakeyama and Yasuno 1981, decreased & of young
													1 parities	L-or obsorred	In or Journal

Table E-2 ERED Results for Benthic Organisms: Cadmium

nar	Author	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc_Wet	Conc_Units	Effect Class	Toxicity Measure	Exposure Route	Species Body Part	Species Start Lifestage	Species Habitat	Species Feeding Behavior	Comments
	Ison, A.R., G.L. Phipps, V.R. Mattson, Koslan and A.M. Cotter	Environ Tox & Chem 10:1309-1319.	Helisoma sp.	Snail	Cadmium	460	MG/KG	Mortality	NOED	Absorption	Whole Body	Adult	Not Specified	Not Specified	No Effect On Mortality
T	espie, R., T. Reisine and E.J. Massaro	I and an a line of	Orconectes propinquus	Craylish	Cadmium	534	MG/KG	Mortality	NOED	Absorption	Whole Body	INA	Not Specified	Not Specified	No significant difference in mortality. On of 15 dead at end of exposure period.
77 Gille	espie R, T Reisine, EJ Massaro	Environ Res 13:364-368	Orconectes propinquus	Craylish	Cadmium	540	MG/KG	Survival	NOED	Water	Whole Body	NS	Not Specified	Not Specified	Onconectes propinquus propinquus initi weight 0.2-1.5g
	son, A.R., G.L. Phipps, V.R. Mattson, Kosian and A.M. Cotter	Environ Tox & Chem 10:1309-1319.	Helisoma sp.	Snail	Cadmium	625	MG/KG	Mortality	LD50	Absorption	Whole Body	Adult	Not Specified	Not Specified	50% Mortality
1 P.A.	Ison, A.R., G.L. Phipps, V.R. Mattson, Kosian and A.M. Cotter	Environ Tox & Chem 10:1309-1319.	Lumbriculus variegatus	Oligochaete	Cadmium	670	MG/KG	Mortality	LD40	Absorption	Whole Body	Adult	Most of North America, Europe; Ponds, takes, on top of mud	Feeds on small animals in substrata	40% Mortality
	s, P.L., L.C. Diener, T.B. Reynoldson, Libiton	Environ Tox & Chem 21(9):1836-1844	Tubifex tubifex	Oligochaete sp.	Cadmium	2635	мд/кд	Reproduction	ED16	Combined	Whole Body	Adult	Not Specified	Not Specified	Number of Cocoons
	ador JP	J Exp. Mar, Biol. Eco.	Eohaustorius estuarius	Amphipod	Cadmium	3250	MG/KG	Mortality	LD50	Water	Whole Body	Adult	Sand and muddy sand bottoms of intertidal zones, to about 50 ft.	Omnivore-plants, detritus	Animals held 121 d; significantly differe than test w/shorter holding time.
2 D.G	s, P.L., L.C. Diener, T.B. Reynoldson, 3.Dixon	Environ Tox & Chem 21(9):1836-1844	Tubilex tubilex	Oligochaete sp.	Cadmium	3415	MG/KG	Reproduction	LOED	Combined	Whole Body	Adult	Not Specified	Not Specified	# Young
Gilli 2 D.G	is, P.L., L.C. Diener, T.B. Reynoldson, 3.Dixon	Environ Tox & Chem 21(9):1836-1844	Tubifex tubifex	Oligochaele sp.	Cadmium	3415	MG/KG	Reproduction	ED28	Combined	Whole Body	Adult	Not Specified	Not Specified	# Young
Gilli 2 D.G	is, P.L., L.C. Diener, T.B. Reynoldson, 3.Dixon	Environ Tox & Chem 21(9):1836-1844	Tubifex tubifex	Oligochaete sp.	Cadmium	3617	MG/KG	Reproduction	ED23	Combined	Whole Body	Adult	Not Specified	Not Specified	Number of Cocoons(all significant above this concentration)
	is, P.L., L.C. Diener, T.B. Reynoldson, 3.Dixon	Environ Tox & Chem 21(9):1836-1844	Tubilex tubilex	Oligochaele sp.	Cadmium	3617	MG/KG	Reproduction	LOED	Combined	Whole Body	Adult	Not Specified	Not Specified	Number of Cocoons(all significant above this concentration)
	is, P.L., L.C. Diener, T.B. Reynoldson, S.Dixon	Environ Tox & Chem 21(9):1836-1844	Tubifex tubifex	Oligochaele sp.	Cadmium	4554	MG/KG	Reproduction		Combined	Whole Body	Adult	Not Specified	Not Specified	# Young
	is, P.L., L.C. Diener, T.B. Reynoldson, 3.Dixon	Environ Tox & Chem 21(9):1836-1844	Tubifex tubifex	Oligochaete sp.	Cadmium	4554	MG/KG	Reproduction	ED91	Combined	Whole Body	Adult	Not Specified	Not Specified	# of cocoons
Gill	is, P.L., L.C. Diener, T.B. Reynoldson, 3.Dixon	Environ Tox & Chem 21(9):1836-1844	Tubifex tubifex	Oligochaete sp.	Cadmium	4554	MG/KG	Reproduction		Combined	Whole Body	Adult	Not Specified	Not Specified	MTLP concentration increase
	is, P.L., L.C. Diener, T.B. Reynoldson, 3.Dixon	Environ Tox & Chem 21(9):1836-1844	Tubifex tubifex	Oligochaele sp.	Cadmium	4554	MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Not Specified	Not Specified	MTLP concentration increase
	is, P.L., L.C. Diener, T.B. Reynoldson, 3.Dixon	Environ Tox & Chem 21(9):1836-1844	Tubilex tubilex	Oligochaete sp.	Cadmium	4554	MG/KG	Reproduction	NOFD	Combined	Whole Body	Adult	Not Specified	Not Specified	# of cocoons that hatched
	ador JP	J Exp. Mar. Biol. Eco.	Eohaustorius estuarius	Amphipod	Cadmium	4600	MG/KG	Mortality	LD50	Water	Whole Body	Adult	Sand and muddy sand bottoms of intertidal zones, to about 50 ft.	Omnivore-plants, detritus	Animals held 17 d
	ador JP	J Exp. Mar. Biol. Eco.	Echaustorius estuarius	Amphipod	Cadmium	5550	MG/KG	Mortality	LD50	Water	Whole Body	Adult	Sand and muddy sand bottoms of intertidal zones, to about 50 ft.	Omnivore-plants, detritus	Animals held 17 d
	THE RESERVE TO STREET, SALES												Introduced into southeastern US; occurs		The state of the s
84 Ka	y, S.H., W.T. Haller and L.A. Garrard	Aquat Toxicol 05:117-128.	Eichhornia crassipes	Water Hyacinth	Cadmium		MG/KG	Growth	NOED	Absorption	Leaf	NA	mainly in sheltered sites on standing and slow-flowing water	Not applicable	No Effect On Growth
94 Km	y, S.H., W.T. Haller and L.A. Garrard	Agust Towked 05:117.128	Eichhornia crassipes	Water Hyacinth	Cadmium		MG/KG	Growth	LOED	Absorption	Leaf	NA.	Introduced into southeastern US; occurs mainly in sheltered sites on standing and slow-flowing water	Not applicable	Reduced County Rate Chloratia
-	y, out in 1711, Thamps and L.M. Garraid	Aquai 10000100,117-120.	Eternorisa crassipes	TY dital Pryaight int	Cadmon	- 110	MORG	GIOMII	LOED	Ausorption	Coar	line.	Introduced into southeastern US; occurs mainly in sheltered sites on standing and	not applicable	Reduced Growth Rate, Chlorosis
84 Ka	y, S.H., W.T. Haller and L.A. Garrard	Aquat Toxicol 05:117-128.	Eichhornia crassipes	Water Hyacinth	Cadmium	142	MG/KG	Growth	NOED	Absorption	Root	NA	slow-flowing water Introduced into southeastern US; occurs	Not applicable	No Effect On Growth
34 Kay	y, S.H., W.T. Haller and L.A. Garrard	Aquat Toxicol 05:117-128.	Eichhornia crassipes	Water Hyacinth	Cadmium	27.5	MG/KG	Growth	NOED	Absorption	Stam	NA	mainly in sheltered sites on standing and slow-flowing water	Not applicable	No Effect On Growth
T	The state of the s	Prigual Foregoi de FFFFFE.	Connorma crassipes	The state of the s	Caution		marra	- Control of the cont	INOLD	Passiphon	Ottom	No.	Introduced into southeastern US; occurs mainly in sheltered sites on standing and	тил аррисация	INV CIRCL OIL GIOWII
4 Kay	y, S.H., W.T. Haller and L.A. Garrard	Aquat Toxicol 05:117-128.	Eichhornia crassipes	Water Hyacinth	Cadmium	49.6	MG/KG	Growth	LOED	Absorption	Stem	NA	slow-flowing water Introduced into southeastern US; occurs	Not applicable	Reduced Growth Rate, Chlorosis
34 Kar	y, S.H., W.T. Haller and L.A. Garrard	Aguat Toxicol 05:117-128.	Eichhornia crassipes	Water Hyacinth	Cadmium	260	MG/KG	Growth	LOED	Absorption	Root	NA	mainly in sheltered sites on standing and slow-flowing water	Not applicable	Reduced Growth Rate, Chlorosis
	in, J.R., D.C. Paschal and C.M. Hayden		Scenedesmus obliquus	Algae - Freshwater Colonial Green			MG/KG	Growth	LOED	Absorption	Whole Body	Cell	Not Specified	Not Specified	Significant inhibition of growth (39% decrease in population doublings).
T	in, J.R., D.C. Paschal and C.M. Hayden		Scenedesmus obliquus	Algae - Freshwater Colonial Green			MG/KG	Growth	LOED	Absorption	Whole Body	Cell	Not Specified	Not Specified	Significant Inhibition Of Growth (27% decrease in population doublings)
	in, J.R., D.C. Paschal and C.M. Hayden		Scenedesmus obliquus	Algae - Freshwater Colonial Green	1		MG/KG	Growth	NOED	Absorption	Whole Body		Not Specified	Not Specified	No Significant Inhibition Of Population Doubling

Table E-3 ERED Results for Benthic Organsisms: Chromium

Year	Author	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc_Wet	Conc_Units	Effect Class	Toxicity Measure	Exposure Route	Species Body Part	Species Start Lifestage	Species Habitat	Species Feeding Behavior	Comments
	nnicelli R, Z Stepriewska, A banach, K														Conversion from dry wt to wet wt based
	ajnocha, J Ostrowski	Chemosphere 55: 141-146	Azolla caroliniana	Carolina mosquito fern	Chromium	8.35	MG/KG	Growth	ED9	Water	Leaf	Adult	Eastern US	Not Specified	on 90% moisture content
	nnicelli R, Z Stepriewska, A banach, K	100											- 1 100		Conversion from dry wt to wet wt based
	ajnocha, J Ostrowski	Chemosphere 55: 141-146	Azolla caroliniana	Carolina mosquito fern	Chromium VI	9.11	MG/KG	Growth	ED20	Water	Leaf	Adult	Eastern US	Not Specified	on 90% moisture content
	nnicelli R, Z Stepriewska, A banach, K	Tanasi T			2 2 22										Conversion from dry wt to wet wt based
	ajnocha, J Ostrowski	Chemosphere 55: 141-146	Azolla caroliniana	Carolina mosquito fern	Chromium VI	15.7	7 MG/KG	Growth	ED20	Water	Leaf	Adult	Eastern US	Not Specified	on 90% moisture content
	nnicelli R, Z Stepriewska, A banach, K						1								Conversion from dry wt to wet wt based
	ajnocha, J Ostrowski	Chemosphere 55: 141-146	Azolla caroliniana	Carolina mosquito fern	Chromium VI	35.6	MG/KG	Growth	ED27	Water	Leaf	Adult	Eastern US	Not Specified	on 90% moisture content
	nnicelli R, Z Stepriewska, A banach, K														Conversion from dry wt to wet wt based
	ajnocha, J Ostrowski	Chemosphere 55: 141-146	Azolla caroliniana	Carolina mosquito fern	Chromium	41.2	2 MG/KG	Growth	ED0	Water	Leaf	Adult	Eastern US	Not Specified	on 90% moisture content
	nnicelli R, Z Stepriewska, A banach, K														Conversion from dry wt to wet wt based
	alnocha, J Ostrowski	Chemosphere 55: 141-146	Azolla caroliniana	Carolina mosquito fem	Chromium	96.4	4 MG/KG	Growth	ED34	Water	Leaf	Adult	Eastern US	Not Specified	on 90% moisture content
Go	rbi, G., M.G. Corradi, M. Invidia, M.														
2001 Ba	ssi	Ecotoxicol Environ Saf 48:36-42	Scenedesmus acutus	algae - Freshwater Unicellular	Chromium	420	MG/KG	Mortality	LD48	Water	Whole Body	NA	Not Specified	Not Specified	Wild strain 80 lux
Go	orbi, G., M.G. Corradi, M. Invidia, M.		100												
2001 Ba	ssi	Ecotoxicol Environ Saf 48:36-42	Scenedesmus acutus	algae - Freshwater Unicellular	Chromium	680	MG/KG	Mortality	LD21	Water	Whole Body	NA	Not Specified	Not Specified	Cr-tolerant strain 80 lux
	orbi, G., M.G. Corradi, M. Invidia, M.	Education Ellinoi del 10:00 16	Continuo in antino	- Control of the Control	-	-			-	11100	Trineio D'auj	101	Troi oposition	The opening	or instant direct or tan
2001 Ba		Ecotoxicol Environ Saf 48:36-42	Scenedesmus acutus	algae - Freshwater Unicellular	Chromium	201	MG/KG	Mortality	LD85	Water	Whole Body	NA	Not Specified	Not Specified	Wild strain 3000 lux
	orbi, G., M.G. Corradi, M. Invidia, M.	Ecoloxico Elivilori oui 40.00 42	Oceriedadinas acutas	larges Tresimater Officerates	Omornam	200	o incerto	Mortunity	2000	1110001	TTTION DOGS	ITEN	Troi opecined	Troi opeomed	TYTIC GITAIT GOOD IGA
2001 Ba		Ecotoxicol Environ Saf 48:36-42	Scenedesmus acutus	algae - Freshwater Unicellular	Chromium	36	MG/KG	Mortality	LD72	Water	Whole Body	NA	Not Specified	Not Specified	Cr-tolerant strain 3000 lux
200100	50	Ecoloxical Environ San 40.30-42	Scenedearnus acutus	again Treatment Chicelola	CHICHMON		o janca i to	reconstanty	LUTE	** 00.01	TYTIONE DOOY	lier.	1401 Openied	I'va Specined	CI-Idelan atali 3000 km
Po	ulton, B.C., T.L. Beitinger, and K.W.				-										
1989 St		Arch Environ Contam Toxicol 18:594-600	Clioperla clio	Stonefly	Chromium	1.4	4 MG/KG	Mortality	ED10	Combined	Whole Body	Immature	Not Specified	Not Specified	
	sulton, B.C., T.L. Beitinger, and K.W.	Aich Environ Contain Toxico 18,594-600	Ciroperia ciro	Storieny	Chiomiuni	1,4	4 MICEIRCI	INCITEBILITY	EUIU	Combined	William Dody	Intriducte.	Ivor Specified	INO Specified	
1989 50		Arch Environ Contam Toxicol 18:594-600	Clioperla clio	Stonefly	Chromium	1.0	7 MG/KG	Mortality	ED30	Combined	Whole Body	Immature	Not Specified	Not Specified	
	sulton, B.C., T.L. Beitinger, and K.W.	Arch Environ Contam Toxicol 18,594-000	Спорена спо	Storieny	Griomium	1.0	/ INIC/NG	Mortality	EU30	Combined	Whole Body	immature	ічої эресінец	иол эреспец	
1989 St		Arch Environ Contam Toxicol 18:594-600	Clioperia clio	Stonefly	Chromium	10	4 MG/KG	Mortality	ED50	Combined	Whole Body	Immature	Not Specified	Not Specified	
1989 21	ewart	Arch Environ Contam Toxicol 18:594-600	Спорета спо	Storielly	Chromium	1.0	4 MONG	iviortanty	EUSU	Combined	Whole Body	Immature	Not Specified	Not Specified	
1000	shida PS, LS Word	Mar Environ Res 07:167-174	Neanthes arenaceodentata	Neanthes	Chromium	054	7 MG/KG	Reproduction	FD4F0		Whole Body	Adult	Not Specified	Feeds on living and dead animals	10
1982 08	snida PS, LS Word	Mar Environ Hes 07:167-174	Neantnes arenaceodentata	Neantnes	Chromium	2.04	/ WG/KG	Heproduction	EU153	Water	Whole Body	Adult	Not Specified	Feeds on living and dead animals	End lifestage is 1st generation Larval
1000	shida PS. LS Word	Mar Environ Res 07:167-174	Neanthes arenaceodentata	N	Chromium		8 MG/KG	Reproduction	NOED						
1982 US	shida PS, LS Word			Neantnes	Chromium	4.41	8 MG/KG	Heproduction	NOED	Water	Whole Body	Adult	Not Specified	Feeds on living and dead animals	Decreased Brood
1984 Dil	T11	Army Corps of Engineers Report Technical					2 MG/KG		MOLD						
1984 DI	IION I IM	Report, D-84-2	Neanthes arenaceodentata	Neanthes	Chromium	4.4	2 MG/KG	Reproduction	NOED				Not Specified	Feeds on living and dead animals	
	111- B0 10 W-1							-							End_lifestage is 1st generation Larval
1982 Os	shida PS, LS Word	Mar Environ Res 07:167-174	Neanthes arenaceodentata	Neanthes	Chromium	6.0	3 MG/KG	Reproduction	E035	Water	Whole Body	Adult	Not Specified	Feeds on living and dead animals	Decreased Brood
									The same of						End_lifestage is 1st generation Larval
1982 Os	shida PS, LS Word	Mar Environ Res 07:167-174	Neanthes arenaceodentata	Neanthes	Chromium	6.0	3 MG/KG	Reproduction	NOED	Water	Whole Body	Adult	Not Specified	Feeds on living and dead animals	Time to Spawn
		The state of the s							72				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
1982 Os	shida PS, LS Word	Mar Environ Res 07:167-174	Neanthes arenaceodentata	Neanthes	Chromium	8.27	8 MG/KG	Reproduction	NOED	Water	Whole Body	Adult	Not Specified	Feeds on living and dead animals	Decreased Brood
									198						
1982 Os	shida PS, LS Word	Mar Environ Res 07:167-174	Neanthes arenaceodentata	Neanthes	Chromium	8.27	8 MG/KG	Reproduction	NOED	Water	Whole Body	Adult	Not Specified	Feeds on living and dead animals	Time to Spawn
		Army Corps of Engineers Report Technical	The state of the s						1112111						Oshida and Word, 1982, # of young
	llon TM	Report, D-84-2	Neanthes arenaceodentata	Manthan	Chromium	0.0	8 MG/KG	Reproduction	LOFE				Not Specified	Feeds on living and dead animals	

Table E-4
ERED Results for Benthic Organsims: Mercury

ar Author	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc_Wet	Conc_Units	Effect Class	Toxicity Measure	Exposure Route	Species Body Part	Species Start Lifestage	Species Habitat	Species Feeding Behavior	Comments
Beckvar N, S Salazar, M Salazar, and	ıĸ					NAC WO	Counth	EDea	Me		Adult	Not Specified	Not Specified	Reduced growth rate. Ref station negated, using dnstream sta as comparison (sta 8) Elevated Cr and Pb; signif correlation Hg-Cr; moderately associated w organic C.
00 Finkelstein	Can J Fish Aquat Sci 57:1103-1112	Elliptio complanata	Eastern Elliptio	Mercury	0.19	9 MG/KG	Growth	ED92	NS		Adult	Southwestern to south-central Canada,	Not Specified	Cr; moderately associated w organic C.
Blesinger, K.E., L.E. Anderson and J. 2 Eaton	G. Arch Environ Contam Toxicol 11:769-774.	Danhnia magna	Water flea	Mercury	0.850	9 MG/KG	Mortality	NOED	Absorption	Whole Body	Immature	Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	No Effect On Mortality
Blesinger, K.E., L.E. Anderson and J.	.G.							0.1		74	11.	Southwestern to south-central Canada, Northwestern to north-central US; ponds,	and all a	No significant difference in number of
82 Ealon	Arch Environ Contam Toxicol 11:769-774.	Daphnia magna	Water flea	Mercury	0.85	9 MG/KG	Reproduction	NOED	Absorption	Whole Body	Immature	small takes, clear and weedy waters Southwestern to south-central Canada,	Feeds on algae and similar organisms	neonates produced in 21 days.
Blesinger, K.E., L.E. Anderson and J.	.G. Arch Environ Contam Toxicol 11;769-774.	Danhais magna	Water flea	Mercury	15	3 MG/KG	Mortality	NOED	Absorption	Whole Body	Immature	Northwestern to north-central US; ponds, small takes, clear and weedy waters	Feeds on algae and similar organisms	No Effect On Mortality
2 Eaton		(Сарлина падна	TY didi inda	morcury	1,0	JINGING	thortomy.	HOLD	Passipiion	Triloic Dody	The state of the s	Southwestern to south-central Canada, Northwestern to north-central US; ponds,		No significant difference in number of
Blesinger, K.E., L.E. Anderson and J. IZ Eaton	.G. Arch Environ Contam Toxicol 11:769-774.	Daphnia magna	Water flea	Mercury	1.5	3 MG/KG	Reproduction	NOED	Absorption	Whole Body	Immature	Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	neonates produced in 21 days.
Blesinger, K.E., L.E. Anderson and J.					V- 5		10 TO 10 TO	ELEVA S	1997	SET VOES		Southwestern to south-central Canada, Northwestern to north-central US; ponds,		35% Reduction in Number Of Neonates
Ealon Ealon	Arch Environ Contam Toxicol 11:769-774.	Daphnia magna	Water flea	Mercury	1.6	4 MG/KG	Reproduction	ED35	Absorption	Whole Body	Immature	small lakes, clear and weedy waters	Feeds on algae and similar organisms	Produced in 21 Days
Blesinger, K.E., L.E. Anderson and J. 32 Eaton	.G. Arch Environ Contam Toxicol 11:769-774.	Daphnia magna	Water flea	Mercury	1.6	4 MG/KG	Mortality	NOED	Absorption	Whole Body	Immature	Southwestern to south-central Canada, Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	No Effect On Mortality
Odin, M., Ferutet-Mazel, A., Ribeyre, 94 A. Boudou	in a land	Hexagenia rigida	Mayfly-Burrowing	Mercury		2 MG/KG	Growth	NOED	Combined	Whole Body	Nymph	Not Specified	Not Specified	No significant difference in weight gain. Residues ranged from 2 to 2.4 mg/kg for the following test condition combinations: pH 5 or pH 7.5, temperatures of 10, 18, o 26C, and photoperiods of 6, 12, or 18 hot per day.
94 A. Boudou	Environ Tox & Chem	Proxagerna rigida	Imayiiy-builowing	iwercury		ZIMORKO	CHOWIII	IVOLD	Combined	William Dody	i vynipii	Two openied	Troi openiou	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Odin, M., Ferutet-Mazel, A., Ribeyre, 94A, Boudou	F. and Environ Tox & Chem	Hexagenia rigida	Maylly-Burrowing	Mercury		2 MG/KG	Mortality	NOED	Combined	Whole Body	Nymph	Not Specified	Not Specified	Residues ranged from 2 to 2.4 mg/kg for the following test condition combinations pH 5 or pH 7.5, temperatures of 10, 18, o 26C, and photoperiods of 6, 12, or 18 hot per day.
Blesinger, K.E., L.E. Anderson and J.												Southwestern to south-central Canada, Northwestern to north-central US; ponds,	72,500	32% Reduction In Number Of Neonales
982 Eaton	Arch Environ Contam Toxicol 11;769-774.	Daphnia magna	Water flea	Mercury	2.3	3 MG/KG	Reproduction	LOED	Absorption	Whole Body	Immature	small lakes, clear and weedy waters	Feeds on algae and similar organisms	Produced in 21 Days
Blesinger, K.E., L.E. Anderson and J.												Southwestern to south-central Canada, Northwestern to north-central US; ponds,		
82 Eaton	Arch Environ Contam Toxicol 11:769-774.	Daphnia magna	Water flea	Mercury	2.3	3 MG/KG	Mortality	NOED	Absorption	Whole Body	Immature	small lakes, clear and weedy waters	Feeds on algae and similar organisms	No Effect On Mortality
Odin, M., Ferutet-Mazel, A., Ribeyre,	F. and Environ Tox & Chem	Hexagenia rigida	Mayfly-Burrowing	Mercury	2	.7 MG/KG	Growth	NOED	Combined	Whole Body	Nymph	Not Specified	Not Specified	No significant difference in weight gain. Residues ranged from 2.7 to 4.5 mg/kg for the following test condition combinations: pH 5 or pH 7.5, temperatures of 10, 18, or 28C, and photoperiods of 6, 12, or 18 hot per day.
Odin, M., Ferutet-Mazet, A., Ribeyre,	.F. and									10.1		1 11		Residues ranged from 2.7 to 4.5 mg/kg fr the following test condition combinations pH 5 or pH 7.5, temperatures of 10, 18, or 26C, and photoperiods of 6, 12, or 18 hor
94 A. Boudou	Environ Tox & Chem	Hexagenia rigida	Mayfly-Burrowing	Mercury	2	.7 MG/KG	Mortality	NOED	Combined	Whole Body	Nymph	Not Specified Southwestern to south-central Canada,	Not Specified	per day.
				Mercuric				2000			L LEWIS CO.	Northwestern to north-central US; ponds,		
3 Nilmi, A.J. and C.Y. Cho.	Wat. Res. 17(12):1791-1795.	Daphnia magna	Water flea	Chloride	3.05	52 MG/KG	Reproduction	NOED	Water	Whole Body	Juvenile	small lakes, clear and weedy waters Southwestern to south-central Canada,	Feeds on algae and similar organisms	
33 Nilmi, A.J. and C.Y. Cho.	Wal, Res. 17(12):1791-1795.	Daphnia magna	Water flea	Mercuric Chloride		56 MG/KG	Reproduction	FDoo	water	Whole Body	Juvenile	Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Front on along and similar associates	
ssjNiimi, A.J. and C.Y. Cho.	Wat, Hes. 17(12):1791-1795.	Dapnnia magna	vvaler nea		4.03	oolMG/NG	Heproduction	EU32	Water	Whole Body	Juvenile	Southwestern to south-central Canada,	Feeds on algae and similar organisms	
83 Nilmi, A.J. and C.Y. Cho.	Wat. Res. 17(12);1791-1795.	Daphnia magna	Water flea	Mercuric Chloride	4.65	56 MG/KG	Mortality	NOED	Water	Whole Body	Juvenile	Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	
Blesinger, K.E., L.E. Anderson and J												Southwestern to south-central Canada, Northwestern to north-central US; ponds,		62% Reduction in Number Of Neonates
82 Eaton	Arch Environ Contam Toxicol 11:769-774.	Daphnia magna	Water flea	Mercury	4.6	67 MG/KG	Reproduction	ED62	Absorption	Whole Body	Immature	small lakes, clear and weedy waters	Feeds on algae and similar organisms	Produced In 21 Days
Blesinger, K.E., L.E. Anderson and J	J.G.											Southwestern to south-central Canada, Northwestern to north-central US; ponds,		(SERT) 1 1912
B2 Ealon	Arch Environ Contam Toxicol 11:769-774.	Daphnia magna	Water flea	Mercury	4.6	87 MG/KG	Mortality	NOED	Absorption	Whole Body	Immature	small lakes, clear and weedy waters Southwestern to south-central Canada.	Feeds on algae and similar organisms	No Effect On Mortality
														The state of the s
Blesinger, K.E., L.E. Anderson and J	J.G.											Northwestern to north-central US; ponds,	Laboration Street Co.	63% Reduction in Number Of Neonates
Blesinger, K.E., L.E. Anderson and J Eaton	J.G. Arch Environ Contam Toxicol 11:769-774.	Daphnia magna	Water flea	Mercury	7.5	57 MG/KG	Reproduction	ED63	Absorption	Whole Body	Immature	Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	63% Reduction in Number Of Neonates Produced in 21 Days
Blesinger, K.E., L.E. Anderson and J	Arch Environ Contam Toxicol 11:769-774. J.G.											Northwestern to north-central US; ponds, small lakes, clear and weedy waters Southwestern to south-central Canada, Northwestern to north-central US; ponds,		Produced in 21 Days
Blesinger, K.E., L.E. Anderson and J	J.G. Arch Environ Contam Toxicol 11:769-774. Arch Environ Contam Toxicol 11:769-774.	Daphnia magna	Water flea	Mercury		57 MG/KG 57 MG/KG	Reproduction	ED63	Absorption Absorption	Whole Body Whole Body	Immature	Northwestern to north-central US; ponds, small lakes, clear and weedy waters Southwestern to south-central Canada, Northwestern to north-central US; ponds, small lakes, clear and weedy waters Southwestern to south-central Canada,	Feeds on algae and similar organisms Feeds on algae and similar organisms	
82 Eaton Blesinger, K.E., L.E. Anderson and J 82 Eaton	J.G. Arch Environ Contam Toxicol 11:769-774. Arch Environ Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic.	Daphnia magna	Water flea		7.5			NOED				Northwestern to north-central US; ponds, small lakes, clear and weedy waters Southwestern to south-central Canada, Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	Produced in 21 Days No Effect On Mortality
Blesinger, K.E., L.E. Anderson and J Blesinger, K.E., L.E. Anderson and J 82 Eaton	Arch Environ Contam Toxicol 11:769-774. Arch Environ Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic. Report, D-84-2	Daphnia magna		Mercury	7.5	57 MG/KG	Mortality	NOED				Northwestern to north-central US; ponds, small takes, clear and weedy waters Southwestern to south-central Canada, Northwestern to north-central US; ponds, small takes, clear and weedy waters Southwestern to south-central Canada, Northwestern to north-central Canada, Northwestern to north-central US; ponds, small takes, clear and weedy waters Southwestern to south-central Canada, Southwestern to south-central Canada,		Produced in 21 Days No Effect On Mortality Blesinger et al., 1982, # of young
Bleslinger, K.E., L.E. Anderson and J Bleslinger, K.E., L.E. Anderson and J Bleslinger, K.E., L.E. Anderson and J Bleslinger, K.E., L.E. Anderson and J Bleslinger, K.E., L.E. Anderson and J	Arch Environ Contam Toxicol 11:769-774. Arch Environ Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic Report, D-84-2 J.G. Arch Environ Contam Toxicol 11:769-774.	Daphnia magna al Daphnia magna	Water flea	Mercury	7.1	57 MG/KG	Mortality	NOED				Northwestern to north-central US; ponds, small lakes, clear and weedy waters Southwestern to south-central Canada, Northwestern to north-central US; ponds, small lakes, clear and weedy waters Southwestern to north-central US; ponds, small lakes, clear and weedy waters Southwestern to north-central US; ponds, small lakes, clear and weedy waters Southwestern to south-central Canada, Northwestern to north-central US; ponds, small lakes, clear and weedy waters Southwestern to south-central Canada, south-central Canada, south-central Canada,	Feeds on algae and similar organisms	Produced in 21 Days No Effect On Mortality Blesinger et al., 1982, # of young 25% Reduction in Survival Compared To Controls in 21 Days
Blesinger, K.E., L.E. Anderson and J Blesinger, K.E., L.E. Anderson and J Blesinger, K.E., L.E. Anderson and J Blesinger, K.E., L.E. Anderson and J Blesinger, K.E., L.E. Anderson and J	Arch Environ Contam Toxicol 11:769-774. Arch Environ Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic Report, D-84-2 J.G. Arch Environ Contam Toxicol 11:769-774.	Daphnia magna Daphnia magna Daphnia magna	Water flea	Mercury	15.2	57 MG/KG 26 MG/KG	Mortality Reproduction	NOED NOED ED25	Absorption	Whole Body	Immature	Northwestern to north-central US; ponds, manufacture, and weedy waters. Southwestern to south-central Canada, North-western to south-central Canada, North-western to north-central US; ponds, south-western to south-central Canada, Northwestern to north-central US; ponds, small falses, clear and weedy waters. South-western to north-central US; ponds, small allows, clear and weedy waters. North-western to north-central US; ponds, small falses, clear and weedy waters. North-western to north-central US; ponds, small falses, clear and weedy waters. North-western to north-central US; ponds, small falses, clear and weedy waters.	Feeds on algae and similar organisms Feeds on algae and similar organisms	Produced in 21 Days No Effect On Mortality Biosinger et al., 1982, # of young 25% Reduction in Survival Compared To
88 Eaton Bleisinger, K.E., L.E. Anderson and J BE Bleisinger, K.E., L.E. Anderson and J BE BLEISINGER, K.E., L.E. Anderson and J Besinger,	Arch Emitron Contam Toxicol 11:769-774. Arch Emitron Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic Report, D-84-2. J.G. Arch Emitron Contam Toxicol 11:769-774.	Daphnia magna Daphnia magna Daphnia magna Daphnia magna	Water flea Water flea	Mercury Mercury	15.4	57 MG/KG 26 MG/KG	Mortality Reproduction Mortality	NOED NOED ED25	Absorption	Whole Body Whole Body	immature	Northwestern in north-central US- ponds, manual laises, clear and weedy waters Southwestern is outh-central Canada, Northwestern in outh-central US- ponds, small laises, clear and weedy waters Southwestern is north-central US- ponds, small laises, clear and weedy waters Southwestern in outh-central US- ponds, manual laises, clear and weedy waters Southwestern in central US- ponds, small laises, clear and weedy waters Southwestern in contin-central US- ponds small laises, clear and weedy waters Southwestern in contin-central US- ponds.	Feeds on algae and similar organisms Feeds on algae and similar organisms Feeds on algae and similar organisms	Produced in 21 Days No Effect On Mortality Blesinger et al., 1982, # of young 25% Reduction in Sunwal Compared To Controls in 21 Days 99% Reduction in Number Of Neonates Produced in 21 Days Blesinger et al., 1982, # of young Blesinger et al., 1982, # of young
88.Eaton Bleesinger, K.E., L.E. Anderson and J 82.Eaton Bleesinger, K.E., L.E. Anderson and J 83.Eaton Bleesinger, K.E., L.E. Anderson and J 83.Eaton Bleesinger, K.E., L.E. Anderson and J 84.Eaton Bleesinger, K.E., L.E. A	Arch Environ Contam Toxicol 11:769-774. Arch Environ Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic-Report, D-84-2. J.G. Arch Environ Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic-Report, D-84-2. Arch Environ Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic-Report, D-84-2.	Daphnia magna Daphnia magna Daphnia magna Daphnia magna Daphnia magna	Water flea Water flea Water flea Water flea	Mercury Mercury Mercury Mercury Mercury	7.5 15.1 18	57 MG/KG 26 MG/KG 1.4 MG/KG 1.4 MG/KG 28 MG/KG	Mortality Reproduction Mortality Reproduction	NOED NOED ED25	Absorption Absorption Absorption	Whole Body Whole Body Whole Body	immature	Northwestern to north-central US-ponds, small alloss, clear and vesedy waters. Southwestern to south-central Canada, Northwestern to south-central Canada, small alloss, clear and vesedy vasiers. Northwestern to north-central US-ponds, small alloss, clear and vesedy waters. Southwestern to south-central Canada, Northwestern to north-central US-ponds, small alloss, clear and vesedy waters. Southwestern to south-central Canada, Northwestern to south-central Canada, Southwestern to south-central Canada. Southwestern to north-central US-ponds.	Feeds on algae and similar organisms Feeds on algae and similar organisms Feeds on algae and similar organisms Feeds on algae and similar organisms	Produced in 21 Days No Effect On Mortality Blesinger et al., 1982, # of young 25% Reduction in Sunvival Compared To Controls in 21 Days 39% Reduction in Number Of Neonates Produced in 21 Days Blesinger et al., 1982, # of young Woms field collected in from 5 areas in 5 areas in
at Cation Blessinger, K.E., L.E. Anderson and J. Blessinger, M.E., L.E. Anderson and J. Blessing	Arch Environ Contam Toxicol 11:769-774. Arch Environ Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic Report, D-84-2 J.G. Arch Environ Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic Report, D-84-2 Arch Environ Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic Report, D-84-2 Arch Environ Contam Toxicol 45:184-180	Daphnia magna Daphnia magna Daphnia magna Daphnia magna Daphnia magna al Daphnia magna Sparganophilus pearsel	Water flea Water flea Water flea Water flea	Mercury Mercury Mercury Mercury Mercury Mercury	7.5 15.1 18 18 23.1	57 MG/KG 28 MG/KG 3.4 MG/KG 3.4 MG/KG 3.8 MG/KG 3.8 MG/KG	Mortality Reproduction Mortality Reproduction Mortality	NOED NOED ED25 ED99 LOED LD50	Absorption Absorption Absorption Water	Whole Body Whole Body Whole Body Whole Body	immature	Northwestern to north-central US-ponds, small alloss, clear and vesedy waters. Southwestern to south-central Canada, Northwestern to south-central Canada, small alloss, clear and vesedy vasiers. Northwestern to north-central US-ponds, small alloss, clear and vesedy waters. Southwestern to south-central Canada, Northwestern to north-central US-ponds, small alloss, clear and vesedy waters. Southwestern to south-central Canada, Northwestern to south-central Canada, Southwestern to south-central Canada. Southwestern to north-central US-ponds.	Feeds on algae and similar organisms Feeds on algae and similar organisms Feeds on algae and similar organisms Feeds on algae and similar organisms	Produced in 21 Days No Effect On Mortality Blesinger et al., 1982, # of young 25% Reduction in Sunvival Compared To Controls in 21 Days 99% Reduction in Number Of Neonates Produced in 21 Days Blesinger et al., 1982, # of young Worms field coffected in from 5 areas in San Francisco Vicinity. Lake Anza Worms field coffected in from 5 areas in San Francisco Vicinity. Lake Anza Worms field coffected in from 5 areas in San Francisco Vicinity. Lake Anza Worms field coffected in from 5 areas in San Francisco Vicinity. Lake Anza Worms field coffected in from 5 areas in San Francisco Vicinity.
at Eaton Blesinger, K.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinge	Arch Erwiron Contam Toxicol 11:769-774. Arch Erwiron Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic Report, D-94-2. J.G. Arch Erwiron Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic Report D-94-2. Arch Erwiron Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic Report D-94-2. Arch Erwiron Contam Toxicol 45:184-189. Arch Erwiron Contam Toxicol 45:184-189.	Daphnia magna I Daphnia magna Daphnia magna Daphnia magna I Daphnia magna I Daphnia magna Sparganophilus pearsel Sparganophilus pearsel	Water flea Water flea Water flea Water flea Water flea	Mercury Mercury Mercury Mercury Mercury Mercury Mercury Mercury	7.5 15.3 18 18 23.3 28	57 MG/KG 28 MG/KG 3.4 MG/KG 3.4 MG/KG 3.2 MG/KG 3.4 MG/KG 3.4 MG/KG	Mortality Reproduction Mortality Reproduction Reproduction Mortality Mortality	NOED NOED ED25 ED99 LOED LD50	Absorption Absorption Absorption Water Water	Whole Body Whole Body Whole Body Whole Body Whole Body	immature	Northwestern in north-central US- ponds, manifal lakes, clear and weedy waters Southwestern to south-central Canada, Northwestern to north-central US- ponds, small alkes, clear and weedy waters Southwestern to south-central Canada, Northwestern to nouth-central Canada, Northwestern to north-central US- ponds, small paters, clear and weedy waters Southwestern to north-central US- ponds, small paters, clear and weedy waters Southwestern to north-central US- ponds, small paters, clear and weedy waters Southwestern to north-central US- ponds, small paters, clear and weedy waters Southwestern to north-central US- ponds, small paters, clear and weedy waters Southwestern to north-central US- ponds, small paters, clear and weedy waters Southwestern to north-central US- ponds, small paters, clear and weedy waters Southwestern to north-central US- ponds, small paters, clear and weedy waters NS	Feeds on algae and similar organisms Feeds on algae and similar organisms Feeds on algae and similar organisms Feeds on algae and similar organisms	Produced in 21 Days No Effect On Mortality Bresinger et al., 1982, # of young 25% Reduction in Sunwind Compared To Centrols in 21 Days 99% Reduction in Number Of Neonates Produced in 21 Days Blasinger et al., 1982, # of young Worms field collected in from 5 areas in Worms field collected in from 5 areas in Worms field collected in from 5 areas in San Francisco sciolings, San Pablo
88 Eaton Bleesinger, K.E., L.E. Anderson and J. 82 Eaton Bleesinger, K.E., L.E. Anderson and J. 83 Eaton Bleesinger, K.E., L.E. Anderson and J. 82 Eaton Bleesinger, K.E., L.E. Anderson and J. 83 Eaton Bleesinger, K.E., L.E. Anderson and J. 84 Dillon TM 84 Dillon TM 85 Dillon TM 86 Dillon TM 87 Dillon TM 87 Dillon TM 88 Dillon TM	Arch Environ Contam Toxicol 11:769-774. Arch Environ Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic Report, D-84-2 J.G. Arch Environ Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic Report, D-84-2 Arch Environ Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic Report, D-84-2 Arch Environ Contam Toxicol 45:184-180	Daphnia magna Daphnia magna Daphnia magna Daphnia magna Daphnia magna al Daphnia magna Sparganophilus pearsel	Water flea Water flea Water flea Water flea	Mercury Mercury Mercury Mercury Mercury Mercury	7.5 15.3 18 18 23.3 28	57 MG/KG 28 MG/KG 3.4 MG/KG 3.4 MG/KG 3.8 MG/KG 3.8 MG/KG	Mortality Reproduction Mortality Reproduction Mortality	NOED NOED ED25 ED99 LOED LD50	Absorption Absorption Absorption Water	Whole Body Whole Body Whole Body Whole Body	immature	Northwestern to north-central US-ponds, small alloss, clear and vesedy waters. Southwestern to south-central Canada, Northwestern to south-central Canada, small alloss, clear and vesedy vasiers. Northwestern to north-central US-ponds, small alloss, clear and vesedy waters. Southwestern to south-central Canada, Northwestern to north-central US-ponds, small alloss, clear and vesedy waters. Southwestern to south-central Canada, Northwestern to south-central Canada, Southwestern to south-central Canada. Southwestern to north-central US-ponds.	Feeds on algae and similar organisms Feeds on algae and similar organisms Feeds on algae and similar organisms Feeds on algae and similar organisms	Produced in 21 Days No Effect On Mortality Bresinger et al., 1982, # of young 25% Reduction in Sunwind Compared To Centrols in 21 Days 99% Reduction in Number Of Neonates Produced in 21 Days Blasinger et al., 1982, # of young Worms field collected in from 5 areas in Worms field collected in from 5 areas in Worms field collected in from 5 areas in San Francisco sciolings, San Pablo
88 Eaton Blesinger, K.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinge	Arch Erwiron Contam Toxicol 11:769-774. Arch Erwiron Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic Report, D-94-2. J.G. Arch Erwiron Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic Report D-94-2. Arch Erwiron Contam Toxicol 11:769-774. Army Corps of Engineers Report Technic Report D-94-2. Arch Erwiron Contam Toxicol 45:184-189. Arch Erwiron Contam Toxicol 45:184-189.	Dephnia magna al Dephnia magna Dephnia magna Daphnia magna al Daphnia magna al Daphnia magna Sparganophilus pearsel Sparganophilus pearsel Chironomus riparius	Water flea Water flea Water flea Water flea Water flea	Mercury Mercury Mercury Mercury Mercury Mercury Mercury Mercury	7.5 15.1 18 18 23.1 29	57 MG/KG 28 MG/KG 3.4 MG/KG 3.4 MG/KG 3.2 MG/KG 3.4 MG/KG 3.4 MG/KG	Mortality Reproduction Mortality Reproduction Reproduction Mortality Mortality	NOED NOED ED25 ED99 LOED LD50	Absorption Absorption Absorption Water Water	Whole Body Whole Body Whole Body Whole Body Whole Body	Immature Immature Immature Immature NS	Northwestern in north-central US- ponds, manifal lakes, clear and weedy waters Southwestern to south-central Canada, Northwestern to north-central US- ponds, small alkes, clear and weedy waters Southwestern to south-central Canada, Northwestern to nouth-central Canada, Northwestern to north-central US- ponds, small paters, clear and weedy waters Southwestern to north-central US- ponds, small paters, clear and weedy waters Southwestern to north-central US- ponds, small paters, clear and weedy waters Southwestern to north-central US- ponds, small paters, clear and weedy waters Southwestern to north-central US- ponds, small paters, clear and weedy waters Southwestern to north-central US- ponds, small paters, clear and weedy waters Southwestern to north-central US- ponds, small paters, clear and weedy waters Southwestern to north-central US- ponds, small paters, clear and weedy waters NS	Feeds on algae and similar organisms Feeds on algae and similar organisms Feeds on algae and similar organisms Feeds on algae and similar organisms Feeds on algae and similar organisms NS NS	Produced in 21 Days No Effect On Mortality Blesinger et al., 1882, # of young 25% Reduction in Sunwival Compared To Controls in 21 Days 99% Reduction in Number Of Neonates Produced in 21 Days Worms field collected in from 5 areas in San Francisco vichily: Lale Anza San Francisco vichily: Lale Anza San Francisco vichily: Lale Anza San Francisco vichily: San Palaio in San Francisco vichili: San Palaio in San Franc
Blesinger, K.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson and J. Blesinger, M.E., L.E. Anderson a	Arch Environ Contam Toxicol 11:769-774. Arch Environ Contam Toxicol 11:769-774. Arry Corps of Engineers Report Technic Report, D-84-2. J.G. Arch Environ Contam Toxicol 11:769-774. Arry Corps of Engineers Report Technic Report, D-84-2. Arch Environ Contam Toxicol 11:769-774. Arry Corps of Engineers Report Technic Report, D-84-2. Arch Environ Contam Toxicol 45:184-189. Arch Environ Contam Toxicol 45:184-189. Bull Environ Contam Toxicol 47:402-405.	Dephnia magna al Dephnia magna Dephnia magna Daphnia magna al Daphnia magna al Daphnia magna Sparganophilus pearsel Sparganophilus pearsel Chironomus riparius Chironomus riparius	Water flea Water flea Water flea Water flea Water flea Midge	Mercury Mercury Mercury Mercury Mercury Mercury Mercury Mercury Mercury	7.5.18 18.18 23.1 29.36	57 MG/KG 226 MG/KG 2.4 MG/KG 2.4 MG/KG 2.5 MG/KG 2.6 MG/KG 3.4 MG/KG 4.4 MG/KG	Mortality Reproduction Mortality Reproduction Reproduction Mortality Mortality Mortality Mortality	NOED NOED ED25 ED99 LOED LD50 LD50 NOED	Absorption Absorption Absorption Water Water Absorption	Whole Body Whole Body Whole Body Whole Body Whole Body Whole Body Whole Body	enmature enmature enmature enmature NS NS Laneal	Northwestern in north-central US- ponds, small sizes, clear and weedy waters Southwestern to south-central Canada, Northwestern in outh-central Canada, Northwestern in outh-central US- ponds, small sizes, clear and weedy waters Southwestern to north-central US- ponds, small sizes, clear and weedy waters Continued to the Canada, Northwestern to north-central US- ponds, small sizes, clear and weedy waters Southwestern to north-central US- ponds, small sizes, clear and weedy waters Southwestern to north-central US- ponds, small sizes, clear and weedy waters Southwestern to north-central US- ponds, small sizes, clear and weedy waters Southwestern to north-central US- ponds, small sizes, clear and weedy waters Southwestern to north-central US- ponds, small sizes, clear and weedy waters	Feeds on algae and similar organisms Feeds on algae and similar organisms Feeds on algae and similar organisms Feeds on algae and similar organisms Feeds on algae and similar organisms NS NS NS Not Specified	Produced in 21 Days No Effect On Mortality Blesinger et al., 1982, # of young 25% Reduction in Survival Compared To Controls in 21 Days 99% Reduction in Number Of Neonales Produced in 41 Days Blesinger et al., 1982, # of young Worms field collected in from 5 areas in San Francisco (cidnity), Lale Anza Worms field collected in from 5 areas in San Francisco (selder), San Palos Neonal San San San San San San San San San San

Table E-4
ERED Results for Benthic Organsims: Mercury

Year	Author	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc_Wet	Conc_Units	Effect Class	Toxicity Measure	Exposure Route	Species Body Part	Species Start Lifestage	Species Habitat	Species Feeding Behavior	Comments
2003	Vidal DE, AJ Horne	Arch Environ Contam Toxicol 45:184-189	Sparganophilus pearsel		Mercury	127	MG/KG	Mortality	LD50	Water	Whole Body	NS	NS	NS	Worms field collected in from 5 areas in San Francisco vicinity; Guadalupe
Year	Author	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc_Wel	Conc_Units	Effect Class	Toxicity Measure	Exposure Route	Species Body Part	Species Start Lifestage	Species Habitat	Species Feeding Behavior	Comments
2004	Bennicelli R, Z Stepriewska, A banach, K Szajnocha, J Ostrowski	Chemosphere 55: 141-146	Azolla caroliniana	Carolina mosquito fern	Mercuric Chloride	7.0	MG/KG	Growth	ED23	Water	Leaf	Adult	Eastern US	Not Specified	Conversion from dry wt to wet wt based or 90% moisture content
2004	Bennicelli R, Z Stepriewska, A banach, K Szajnocha, J Ostrowski	Chemosphere 55: 141-146	Azolla caroliniana	Carolina mosquito fern	Mercuric Chloride	30.6	MG/KG	Growth	ED31	Water	Leaf	Adult	Eastern US	Not Specified	Conversion from dry wt to wet wt based of 90% moisture content
	Bennicelli R, Z Stepriewska, A banach, K	Chemosphere 55: 141-146	Azolla caroliniana	Carolina mosquito fern	Mercuric Chloride	57.	MG/KG	Growth	ED28	Water	Leaf	Adult	Eastern US	Not Specified	Conversion from dry wt to wet wt based of 90% moisture content

Table E-5 ERED Results for Benthic Organisms: Lead

ar	Author	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc_Wet	Conc_Units	Effect Class	Toxicity Measure	Exposure Route	Species Body Part	Species Start Lifestage	Species Habitat	Species Feeding Behavior	Comments
06 Bld	vell JR, JR Gorrie	Environ Pollut 139-206-213	Chironomus decorus	Midge	Lead	104	MG/KG	Mortality	NOED	Combined	Whole Body	Larval	Bottom dwelling in tubes in shallow ponds or lakes	microorganisms small bits of detritus	Oppt also exposed to Zn and Cu Chironomus maddeni
													Bottom dwelling in tubes in shallow ponds		growth = dry wt; Oppt also exposed to Z
06 Bid	rell JR, JR Gorrie	Environ Pollut 139-206-213	Chironomus decorus	Midge	Lead	104	MG/KG	Growth	NOED	Combined	Whole Body	Larval	or lakes	microorganisms small bits of detritus	and Cu Chironomus maddeni
	12.77												Widely distributed in North America in		
	lean, R.S., U. Borgmann and D.G.	Poster P418, 14th Annual Meeting, SETAC		1	l			1					permanent bodies of water with submerged		50% Mortality (estimate). Pre-exposed
193 Dix	in .	Houston	Hyalella azteca	Amphipod - Freshwater	Lead	115	MG/KG	Mortality	LD50	Absorption	Whole Body	Adult	vegetation	Detritivore	100 nM Pb for 4 weeks.
											CONTRACTOR STATE				BB that are significantly different from
102 Chi	nni, S., R.N. Khan, P.R. Yallapragada	Ecotoxicol Environ Sat 51:79-84	Penaeus Indicus	copepod	Lead	118	MG/KG	Mortality	LD10	Water	Whole Body	Juvenile	Eastern US	Feeds on Algae	controls and that produce 10% mortali
		CITY THE CONTRACT OF											Bottom dwelling in tubes in shallow ponds		8ppt also exposed to Zn and Cu
06 Bid	vell JR, JR Gorrie	Environ Pollut 139-206-213	Chironomus decorus	Midge	Lead	124	MG/KG	Mortality	ED85	Combined	Whole Body	Larval	or lakes		Chironomus maddeni
						0							Bottom dwelling in tubes in shallow ponds		growth = dry wt; 8ppt also exposed to
106 Bld	vell JR, JR Gorrie	Environ Pollut 139-206-213	Chironomus decorus	Midge	Lead	124	MG/KG	Growth	ED65	Combined	Whole Body	Larval	or lakes	microorganisms small bits of detritus	and Cu Chironomus maddeni
													Widely distributed in North America in	THE RESERVE THE PARTY OF THE PA	
-1-													permanent bodies of water with submerged	Control of the contro	Result of modelling mortality rates vs
96 Ma	Lean RS, U Borgmann, and DG Dixon	Can J Fish Aguat Sci 53:2212-2220	Hyalella azleca	Amphipod - Freshwater	Lead	130,328	MG/KG	Survival	LOED	Water	Whole Body	Adult	vegetation	Detritivore	conc.
													Widely distributed in North America in		
		The second second											permanent bodies of water with submerged		Result of modelling mortality rates vs
196 Ma	Lean RS, U Borgmann, and DG Dixon	Can J Fish Aquat Sci 53:2212-2220	Hyalella azteca	Amphipod - Freshwater	Lead	150.8	MG/KG	Mortality	LD50	Water	Whole Body	Adult	vegetation	Detritivore	conc. **10-16 wk old
-	Comit tief o confirming and a distri-	Total Control of the				1		1					Widely distributed in North America in		
Ma	clean, R.S., U. Borgmann and D.G.	Poster P418, 14th Annual Meeting, SETAC	12.0	1111	1 1 1		100		11 71		11		permanent bodies of water with submerged		
993 Dix		Houston	Hyalella azteca	Amphipod - Freshwater	Lead	16	MG/KG	Mortality	LD50	Absorption	Whole Body		vegetation	Detritivore	50% Mortality (estimate).
	emberg J; DE Nahabedian; EA Wider;	110001011	- Janonia delibora		-								Most of North America, Europe; Ponds,		
	V Guerrero	Toxicology 210:45-53	Lumbriculus variegatus	Oligochaete	Lead	170	MG/KG	Mortality	NOED	Water	Whole Body	Adult	lakes, on top of mud	Feeds on small animals in substrata	The state of the s
OSHALI	V Guerrero	10x0000gy 210x0500	Cumbriculus variogaius	Cityoutuete	Louis		Jincorta	inortunity	ITOLD	TY GIO	TT HOTE DOUY	I I	Introduced; spread to all Great Lakes,	decis on strain arminas in substitute	
Ven	ak, M.H.S., Y.A. Wink, S.C. Stuilfzand,	Example 1995											some rivers in Atlantic, Mississippi		
	Buckert-de Jong, C.J. De Groot and						1	1						Filter feeder; phytoplankton, bacteria, fine	Decreased weight gale is sundring
	Admiraal	Aguat Toxicol 30:77-89	Budana arkana ka	11	Lead		MG/KG	Growth	LOED	Ab	Whole Body	Adult	hard surface	detrital particles	mussels.
94 W.	Admiraal	Aquat Toxicol 30:77-89	Dreissena polymorpha	Mussel - Zebra	Lead	20	UMG/KG	Growin	LOED	Absorption	W noie Body	Adult		detrital particles	musseis.
							1						Introduced; spread to all Great Lakes,		
	ak, M.H.S., Y.A. Wink, S.C. Stuijfzand,				100		la c						some rivers in Atlantic, Mississippi		
	. Buckert-de Jong, C.J. De Groot and	Late room												Filter feeder; phytoplankton, bacteria, fine	
994 W.	Admiraal	Aquat Toxicol 30:77-89	Dreissena polymorpha	Mussel - Zebra	Lead	20	0 MG/KG	Mortality	LOED	Absorption	Whole Body	Adult	hard surface	detrital particles	52% Mortality
							3.00								BB that are significantly different from
		and the same of the same	L coll		100 1			100 1000	1200	1	tar o ar e		area and the second of the second of		control and that produced significant
002 Ch	nni, S., R.N. Khan, P.R. Yallapragada	Ecotoxicol Environ Sal 51:79-84	Penaeus indicus	copepod	Lead	20	0 MG/KG	Mortality	LD25	Water	Whole Body	Juvenile	Eastern US	Feeds on Algae	Increase in mortality.
	emberg J; DE Nahabedian; EA Wider;			Lancas and the same of the sam									Most of North America, Europe; Ponds,		Total State of the
005 NR	V Guerrero	Toxicology 210:45-53	Lumbriculus variegatus	Oligochaete	Lead	22	0 MG/KG	Mortality	NOED	Water	Whole Body	Adult	lakes, on top of mud	Feeds on small animals in substrata	
													Bottom dwelling in tubes in shallow ponds		Oppt also exposed to Zn and Cu
006 Bld	well JR, JR Gorrie	Environ Pollut 139-206-213	Chironomus decorus	Midge	Lead	26	9 MG/KG	Mortality	NOED	Combined	Whole Body	Larval	or lakes	microorganisms small bits of detritus	Chironomus maddeni
										and a second			Bottom dwelling in tubes in shallow ponds		growth = dry wt; Oppt also exposed to
	well JR, JR Gorrie	Environ Pollut 139-206-213	Chironomus decorus	Midge	Lead	26	9 MG/KG	Growth	ED50	Combined	Whole Body	Larval	or lakes	microorganisms small bits of detritus	and Cu Chironomus maddeni
	nmermans KR, W Peeters, and M.														
992 To		Hydrobiologia 241:119-134.	Chironomus riparius	Midge	Lead	28	0 MG/KG	Growth	ED29	Water	Whole Body	Larval	Not Specified	Not Specified	
	nmermans KR, W Peeters, and M.														
992 To	nkes	Hydrobiologia 241:119-134.	Chironomus riparius	Midge	Lead	28	0 MG/KG	Growth	ED29	Water	Whole Body	Larval	Not Specified	Not Specified	
															BB that are significantly different from
									10.00	1111		1	A STATE OF THE STA	Land Control of the C	control and that produced significant
	nni, S., R.N. Khan, P.R. Yallapragada	Ecotoxicol Environ Saf 51:79-84	Penaeus indicus	copepod	Lead	30	0 MG/KG	Mortality	LD50	Water	Whole Body	Juvenile	Eastern US	Feeds on Algae	increase in mortality.
Als	emberg J; DE Nahabedian; EA Wider;						195		2.1				Most of North America, Europe; Ponds,		
005 NR	V Guerrero	Toxicology 210:45-53	Lumbriculus variegatus	Oligochaete	Lead	30	0 MG/KG	Mortality	NOED	Water	Whole Body	Adult	lakes, on top of mud	Feeds on small animals in substrata	
								17000					Northern U.S.southern Canada; widely	Larvae feed on microorganisms, small	
Ma	nn RM, M Grosell, A Blanchini, CM			1			1.04	1		100000000000000000000000000000000000000			distributed on bottoms of streams, lakes,	animals in sediments, detritus; adults non-	Results are from a mixture of zinc ar
004 W	od	Environ Tox & Chem 23:388-395	Chironomus tentans	Midge	Lead	48	1 MG/KG	Growth	NOED	Combined	Whole Body	Egg	ponds	feeding	lead.
10	CONTRACTOR OF THE STATE OF THE				SECURIOR SEC	Marine Co.	120000	100000	THE RESERVE TO THE	ATTO SECTION			DOMESTIC OF THE PARTY OF THE PA	THE RESERVE OF THE PARTY OF THE	STATE OF THE PARTY
02 Ma	Fariane, G.R. and M.D. Burchett	Mar Environ Res 54; 65-84	Avicennia marina	Grey Mangrove	Lead	4	4 MG/KG	Growth	LOED	Combined	Leaf	Yearling	Littoral		Total Mass.
	Farlane, G.R. and M.D. Burchett	Mar Environ Res 54: 65-84	Avicennia marina	Grey Mangrove	Lead	4.	4 MG/KG	Growth	LOED	Combined	Leaf	Yearling	Littoral		Total leaf area.
	Farlane, G.R. and M.D. Burchett	Mar Environ Res 54: 65-84	Avicennia marina	Grey Mangrove	Lead	4.	4 MG/KG	Growth	LOED	Combined	Leaf	Yearling	Littoral		Seedling Height
	Farlane, G.R. and M.D. Burchett	Mar Environ Res 54: 65-84	Avicennia marina	Grey Mangrove	Lead	4	4 MG/KG	Growth	NOED	Combined	Leaf	Yearling	Littoral		Emergence
	Farlane, G.R. and M.D. Burchett	Mar Environ Res 54: 65-84	Avicennia marina	Grey Mangrove	Lead		0 MG/KG	Growth	NOED	Combined	Root	Yearling	Littoral		Emergence.
	Farlane, G.R. and M.D. Burchett	Mar Environ Res 54: 65-84	Avicennia marina	Grey Mangrove	Lead		0 MG/KG	Growth	LOED	Combined	Root	Yearling	Littoral		Seedling Height.
	cFarlane, G.R. and M.D. Burchett	Mar Environ Res 54: 65-84	Avicennia marina	Grey Mangrove	Lead		O MG/KG	Growth	LOED	Combined	Root	Yearling	Littoral		Total Leaf Area.
	cFarlane, G.R. and M.D. Burchett	Mar Environ Res 54: 65-84	Avicennia marina	Grey Mangrove	Lead		0 MG/KG	Growth	LOED	Combined	Root	Yearling	Littoral		Total Mass.
Jan Will	and the second s		The state of the s	I mangrove	Total Control	24	- Indiana	Sionui	Local	Combined	Total Total	1 semily	Introduced into southeastern US: occurs		1 Uttil md35.
		1													
084 V-	, S.H., W.T. Haller and L.A. Garrard	Aguat Toxicol 05:117-128.	Elebhornia orașelna-	Water Huseinth	Load	100	0 MG/KG	Orough	NOED	Absorbios	Deat	hua.	mainly in sheltered sites on standing and	htst	N. 54 - 10 - 0 - 14
		priquat 10/000105;117-120.	Eichhornia crassipes	Water Hyacinth	Iread	1 103	UIMG/AG	Growth	INCED	Absorption	moot	IIVA	slow-flowing water	Not applicable	No Effect On Growth

Table E-5
ERED Results for Benthic Organisms: Lead

ear	Author	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc_Wel	Conc_Units	Effect Class	Toxicity Measure	Exposure Route	Species Body Part	Species Start Lifestage	Species Habitat	Species Feeding Behavior	Comments
Ai	semberg J; DE Nahabedian; EA Wider;	Toxicology 210:45-53	Blomphalaria glabrata	Biomphalaria glabrata	Lead		MG/KG	Mortality	NOED	Water	Whole Body	Adult	Not Specified	Not Specified	
D IN	TV Guerrer0	TOMOUNTY 210.40-03	от учиния ралана	Dioniphiliana generala								100	Widely distributed in North America in permanent bodies of water with submerged		
DIR.	orgmann U, WP Norwood	Can J Fish Aguat Sci 56:1494-1503	Hyalella azteca	Amphipod - Freshwater	Lead	5.2	MG/KG	Mortality	LD25	Absorption	Whole Body	Immalure	vegetation	Detritivore	Field-collected sediment
T							24		1			24	Widely distributed in North America in permanent bodies of water with submerged	2.0	The second secon
9 B	orgmann U, WP Norwood	Can J Fish Aquat Sci 56:1494-1503	Hyalella azteca	Amphipod - Freshwater	Lead	6.7	1 MG/KG	Mortality	LD50	Absorption	Whole Body	Immature	vegetation	Detritivore	Field-collected sediment
Ai	semberg J; DE Nahabedian; EA Wider;	Language August		Oligochaete	Lead		0 MG/KG	Mortality	NOED	Water	Whole Body	Achill	Most of North America, Europe; Ponds, lakes, on top of mud	Feeds on small animals in substrata	
A A	RV Guerrero semberg J; DE Nahabedian; EA Wider;	Toxicology 210:45-53	Lumbriculus variegatus		2000	,						Audit			
05 N	RV Guerrero	Toxicology 210:45-53	Biomphalaria glabrata	Biomphalaria glabrata	Lead	2	0 MG/KG	Mortality	NOED	Water	Whole Body	Adult	Not Specified	Not Specified	Water, sed, benthic inverts @ 12 lakes,
													Widely distributed in North America in		6.6-8.3. Lab tests w/seds and Hyalella.
B	orgmann U, WP Norwood, TB eynoldson, and F Rosa	Can J Fish Aquat Sci 58:950-960	Hyalella azteca	Amphipod - Freshwater	Lead	26 10	7 MG/KG	Mortality	LD25	Water	Whole body	Adult	permanent bodies of water with submerged vegetation	Detritivore	Beakers lowered pH to 4, used imhor cones instead.
A	semberg J; DE Nahabedian; EA Wider;					20.10		mortuny				Actuit	Most of North America, Europe; Ponds,		
005 N	RV Guerrero isemberg J; DE Nahabedian; EA Wider;	Toxicology 210:45-53	Lumbriculus variegatus	Oligochaete	Lead	3	0 MG/KG	Mortality	NOED	Water	Whole Body	Adult	lakes, on top of mud	Feeds on small animals in substrata	
005 N	RV Guerrero	Toxicology 210:45-53	Blomphalaria glabrata	Biomphalaria glabrata	Lead	3	2 MG/KG	Mortality	NOED	Water	Whole Body	Adult	Not Specified Introduced; spread to all Great Lakes,	Not Specified	
K	raak, M.H.S., Y.A. Wink, S.C. Stuljfzand,	+1 1											some rivers in Atlantic, Mississippi		
N	.C. Buckert-de Jong, C.J. De Groot and	A T	Designation and a section	About Tobar		١.	E 110 NO	Counth	NOED	Absorption	Whole Body	Adult		Filter feeder; phytoplankton, bacteria, fine detrital particles	No effect on weight gain in surviving
\neg	/. Admiraal	Aquat Toxicol 30:77-89	Dreissena polymorpha	Mussel - Zebra	Lead	- 3	5 MG/KG	Growth	NOED	Absorption	Whole Body	Addit	hard surface Introduced; spread to all Great Lakes,	detital particles	illusseis.
	raak, M.H.S., Y.A. Wink, S.C. Stuijizand,	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1			-	1						some rivers in Atlantic, Mississippi drainage basins; attaches to rocks, other	Filter feeder; phytoplankton, bacteria, fine	
94 W	.C. Buckert-de Jong, C.J. De Groot and r. Admiraal	Aquat Toxicol 30:77-89	Dreissena polymorpha	Mussel - Zebra	Lead	3	5 MG/KG	Mortality	NOED	Absorption	Whole Body	Adult	hard surface	detrital particles	No Effect On Mortality
Т													Introduced; spread to all Great Lakes,		
							1.5						drainage basins; attaches to rocks, other	Filter feeder; phytoplankton, bacteria, fine	~1.78cm initial length Fraction = Soft
192 B	eeker, EAJ, MHS Kraak, C Davids.	Hydrobiol Bull 25: 233-235	Dreissena polymorpha	Mussel - Zebra	Lead	4	0 MG/KG	Mortality	NOED	Water	Other	Immature	hard surface	detrital particles	Tissues
978 S	pehar RL, RL Anderson, JT Flandt	Environ Pollut 15:195-208	Gammarus pseudolimnaeus	Amphipod	Lead	4	0 MG/KG	Mortality	LD61	Water	Whole Body	Adult	Not Specified	Not Specified	(log scaledifficult to interpret)
A	semberg J; DE Nahabedian; EA Wider; RV Guerrero	Toxicology 210:45-53	Biomphalaria glabrata	Blomphalaria glabrata	Load		n MG/KG	Mortality	NOED	Water	Whole Body	Adult	Not Specified	Not Specified	V =1 -1 to
997 R	itterhoff, J., and G-P. Zauke	Aquat Toxicol	Calanus hyperboreus	Calanoid copepod	Lead	40	7 MG/KG	Mortality	LD50	Water	Whole Body	Adult			Clearly written paper
Т	11		7	+ 1.2									Widely distributed in North America in		Tests run with 4-5 wk old amphipods:
-													permanent bodies of water with submerged		Without pre-exposure to 100nM Pb. Res
996 N	acLean RS, U Borgmann, and DG Dixon	Can J Fish Aquat Scl 53:2212-2220	Hyalella azteca	Amphipod - Freshwater	Lead	44.75	5 MG/KG	Survival	NOED	Water	Whole Body	Adult	vegetation Widely distributed in North America in	Detritivore	of modelling mortality rates vs Pb conc.
-									1				permanent bodies of water with submerged	11 -	Result of modelling mortality rates vs Pl
996 M	acLean RS, U Borgmann, and DG Dixon	Can J Fish Aquat Sci 53:2212-2220	Hyalella azleca	Amphipod - Freshwater	Lead	48.27	7 MG/KG	Survival	NOED	Water	Whole Body	Immature	vegetation Widely distributed in North America In	Detritivore	conc. Tests run with 4-5 wk old amphipods: V
		Results and a second							-				permanent bodies of water with submerged		pre-exposure to 100nM Pb. Result of
996 M	acLean RS, U Borgmann, and DG Dixon semberg J; DE Nahabedian; EA Wider;	Can J Fish Aquat Sci 53:2212-2220	Hyalella azteca	Amphipod - Freshwater	Lead	58.84	4 MG/KG	Survival	NOED	Water	Whole Body	Adult	vegetation Most of North America, Europe: Ponds.	Detritivore	modelling mortality rates vs Pb conc.
005 N	RV Guerrero	Toxicology 210:45-53	Lumbriculus variegatus	Oligochaete	Lead		IO MG/KG	Mortality	NOED	Water	Whole Body	Adult	lakes, on top of mud	Feeds on small animals in substrata	
	Itterhoff, J., and G-P. Zauke Itterhoff, J., and G-P. Zauke	Aquat Toxicol Aquat Toxicol	Themisto libellula Themisto abvasorum	Mesoplankton amphipod Mesoplankton amphipod			.3 MG/KG .3 MG/KG	Mortality	LD50	Water	Whole Body Whole Body	Adult	Open boreal ocean Open boreal ocean	Omnivore-diatoms, small crustacean Omnivore-diatoms, small crustacean	
997 17	merrion, J., and G-r., Zauke	Aquat Toxicor	Thermsio abyssorum	wesopianition ampripod	Lead	03	JIMO/NG	wioreamy	LUSO	VV ditti	W Hole Body	Addit		Offilinvoie-diatoris, arinin crustacean	
													Widely distributed in North America in permanent bodies of water with submerged		Tests run with 4-5 wk old amphipods: Without pre-exposure to 100nM Pb. Re
96 N	acLean RS, U Borgmann, and DG Dixon	Can J Fish Aquat Sci 53:2212-2220	Hyalella azteca	Amphipod - Freshwater	Lead	68,37	6 MG/KG	Survival	LOED	Water	Whole Body	Adult	vegetation	Detritivore	of modelling mortality rates vs Pb conc.
N	aclean, R.S., U. Borgmann and D.G.	Poster P418, 14th Annual Meeting, SETAC											Widely distributed in North America in permanent bodies of water with submerged	4 1-4 4 4 4 1 1 1 1	
993 D		Houston	Hyalella azteca	Amphipod - Freshwater	Lead	1 7	70 MG/KG	Mortality	LD50	Absorption	Whole Body	Immature	vegetation	Detritivore	50% Mortality (estimate).
														- 4	BB that are significantly different from control and that did not produce signific
002 0	hinni, S., R.N. Khan, P.R. Yallapragada	Ecotoxicol Environ Saf 51:79-84	Penaeus Indicus	copepod	Lead	1 7	70 MG/KG	Mortality	NOED	Water	Whole Body	Juvenile	Eastern US	Feeds on Algae	Increase in mortality.
006 B	idwell JR, JR Gorrie	Environ Pollut 139-206-213	Chironomus decorus	Midge	Lead		72 MG/KG	Mortality	NOED	Combined	Whole Body	Larval	Bottom dwelling in tubes in shallow ponds or lakes	Adults non-feeding; larvae utilize microorganisms small bits of detritus	4ppt also exposed to Zn and Cu Chironomus maddeni
	And the state of t		Chlorocau						FDOO				Bottom dwelling in tubes in shallow ponds	Adults non-feeding; larvae utilize	4ppt also exposed to Zn and Cu
2006 E	idwell JR, JR Gorrie	Environ Pollut 139-206-213	Chironomus decorus	Midge	Lead	-	72 MG/KG	Mortality	ED28	Combined	Whole Body	Larval	or lakes Bottom dwelling in tubes in shallow ponds	microorganisms small bits of detritus Adults non-feeding; larvae utilize	Chironomus maddeni growth = dry wt; 4ppt also exposed to Zr
006 E	lidwell JR, JR Gorrie	Environ Pollut 139-206-213	Chironomus decorus	Midge	Lead		72 MG/KG	Growth	ED29	Combined	Whole Body	Larval	or lakes	microorganisms small bits of detritus	and Cu Chironomus maddeni
006 E	ildwell JR, JR Gorrie	Environ Pollut 139-206-213	Chironomus decorus	Midge	Lead		72 MG/KG	Growth	ED62	Combined	Whole Body	Larval	Bottom dwelling in tubes in shallow ponds or lakes	microorganisms small bits of detritus	growth = dry wt; 4ppt also exposed to Zi and Cu Chironomus maddeni
							-		1.00				Widely distributed in North America in	The Control of the Co	
1996	facLean RS, U Borgmann, and DG Dixon	Can J Fish Aquat Sci 53:2212-2220	Hyalella azteca	Amphipod - Freshwater	Lead	72.	MG/KG	Mortality	LD50	Water	Whole Body	Immature	permanent bodies of water with submerged vegetation	Detritivore	Result of modelling mortality rates vs Pl conc.
T							111						Widely distributed in North America in		
1996 N	facLean RS, U Borgmann, and DG Dixon	Can J Fish Aquat Sci 53:2212-2220	Hyalella azteca	Amphipod - Freshwater	Lead	82.0	57 MG/KG	Survival	LOED	Water	Whole Body	Immature	permanent bodies of water with submerged vegetation	Detritivore	Result of modelling mortality rates vs Pl conc.
													Widely distributed in North America in		
996	facLean RS, U Borgmann, and DG Dixon	Can J Fish Aqual Sci 53:2212-2220	Hyalella azteca	Amphipod - Freshwater	Lead	82.1	88 MG/KG	Survival	NOED	Water	Whole Body	Adult	permanent bodies of water with submerged vegetation	Detritivore	Result of modelling mortality rates vs P conc.
	lidwell JR, JR Gorrie	Environ Pollut 139-206-213		Midae	Lood		83 MG/KG		NOED			Lauri	Bottom dwelling in tubes in shallow ponds	Adults non-feeding; larvae utilize	4ppt also exposed to Zn and Cu
		la contraction of the second	Chironomus decorus	imidge	Lead			Mortality		Combined	Whole Body	Larval	or lakes Bottom dwelling in tubes in shallow ponds	microorganisms small bits of detritus Adults non-feeding; larvae utilize	Chironomus maddeni growth = dry wt; 4ppt also exposed to 2
	Idwell JR, JR Gorrie Isemberg J; DE Nahabedian; EA Wider;	Environ Pollut 139-206-213	Chironomus decorus	Midge	Lead	1	B3 MG/KG	Growth	ED33	Combined	Whole Body	Larval	or lakes	microorganisms small bits of detritus	and Cu Chironomus maddeni
005	RV Guerrero	Toxicology 210:45-53	Biomphalaria glabrata	Blomphalaria glabrata	Lead		85 MG/KG	Mortality	NOED	Water	Whole Body	Adult	Not Specified	Not Specified	A Ver
		VI											Widely distributed in North America in		Tests run with 4-5 wk old amphipods:
996 N	facLean RS, U Borgmann, and DG Dixon	Can J Fish Aquat Sci 53:2212-2220	Hyalella azteca	Amphipod - Freshwater	Lead	85.	78 MG/KG	Survival	LOED	Water	Whole Body	Adult	permanent bodies of water with submerged vegetation	Detritivore	pre-exposure to 100nM Pb. Result of modelling mortality rates vs Pb conc.
T	74 71											11			
		* *** 1 "11	111111111111111111111111111111111111111			1	1		1000	1 111	100		Widely distributed in North America in permanent bodies of water with submerged	111111111111111111111111111111111111111	Tests run with 4-5 wk old amphipods: Without pre-exposure to 100nM Pb. Re
996	facLean RS, U Borgmann, and DG Dixon	Can J Fish Aquat Sci 53:2212-2220	Hyalella azleca	Amphipod - Freshwater	Lead	89.	92 MG/KG	Mortality	LD50	Water	Whole Body	Adult	vegetation	Detritivore	of modelling mortality rates vs Pb cond
	faclean, R.S., U. Borgmann and D.G.	Poster P418, 14th Annual Meeting, SETAC											Widely distributed in North America in permanent bodies of water with submerged	111	101
993	Dixon	Houston	Hyalella azteca	Amphipod - Freshwater	Lead		90 MG/KG	Mortality	LD50	Absorption	Whole Body	Adult	vegetation	Detritivore	50% Mortality (estimate).
													Widely distributed in North America in permanent bodies of water with submerged		Tests run with 4-5 wk old amphipods: \ pre-exposure to 100nM Pb. Result of
996	MacLean RS, U Borgmann, and DG Dixon	Can J Fish Aquat Sci 53:2212-2220	Hyalella azteca	Amphipod - Freshwater	Lead	101.	53 MG/KG	Mortality	LD50	Water	Whole Body	Adult	vegetation	Detritivore	modelling mortality rates vs Pb conc.
			1	1 1		1									[log scaledifficult to interpret]; no residuata for stonelilles, caddisflies, and sna
			DESCRIPTION OF	1 1					10.111		11111111			The state of the s	Stated that Pb conc.to 565 ug/L did not
	ipehar RL, RL Anderson, JT Flandt	Environ Pollut 15:195-208	Gammarus pseudolimnaeus	Down CO O			02 MG/KG	Mortality	LD61		Whole Body				

Table E-6
ERED Results for Benthic Organisms: Selenium

Year	Author	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc_We	t Cong_Unit	Effect Class	Toxicity Measure	Exposure Route	Species Body Part	Species Start Lifestage	Species Habitat	Species Feeding Behavior	Comments
1004 Ala	imo, J., R.S. Ogle and A.W. Knight	Arch Environ Contam Toxicol 27:441-448	Chironomus decorus	Midge	Selenium	0	2 MG/KG	Growth	ED40	Combined	Whole Body	Egg	Bottom dwelling in tubes in shallow ponds or lakes	Adults non-feeding; larvae utilize microorganisms small bits of detritus	40% Decreased body weight
				пподо	Colonian								Bottom dwelling in tubes in shallow ponds	Adults non-feeding; larvae utilize	
1995 Ma	Ichow, D.E., A.W. Knight and K.J. Maier	Arch Environ Contam Toxicol 29:104-109	Chironomus decorus	Midge	Selenium	0.5	1 MG/KG	Growth	LOED	Ingestion	Whole Body	Larval	or lakes Rottom dwelling in tubes in shallow ponds	microorganisms small bits of detritus Adults non-feeding: larvae utilize	Reduction In Growth (weight)
1994 Ala	imo, J., R.S. Ogle and A.W. Knight	Arch Environ Contam Toxicol 27:441-448	Chironomus decorus	Midge	Selenium		2 MG/KG	Growth	ED54	Combined	Whole Body	Egg	or lakes	microorganisms small bits of detritus	54% Decreased body weight
													Southwestern to south-central Canada, Northwestern to north-central US; ponds,		Stimulatory effect on size of offspring (blength of offspring) [Survival of daphnids was signif. decreased only at 1,410 ug/L but no residue information is available to this conc. However,
1990 lng	ersoll CG, FJ Dwyer, and TW May	Environ Tox & Chem 09:1171-1181	Daphnia magna	Water flea	Selenium	2.9	MG/KG	Growth	ED105	Water	Whole Body	Larval	small lakes, clear and weedy waters	Feeds on algae and similar organisms	reproductive/development occurred]
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								7 - 1			1 -	Southwestern to south-central Canada, Northwestern to north-central US; ponds,		Stimulatory effect on size of offspring (blength of offspring) [Survival of daphnids was signif, decreased only at 1,410 ug/t but no residue information is available fithis conc. However.
1990 Inc	ersoll CG, FJ Dwyer, and TW May	Environ Tox & Chem 09:1171-1181	Daphnia magna	Water flea	Selenium	2.5	MG/KG	Blochemical	ED121	Water	Whole Body	Larval	small lakes, clear and weedy waters	Feeds on algae and similar organisms	reproductive/development occurred]
1000 115	production of the second of th			1									Southwestern to south-central Canada,	= 1	Adult [Survival of daphnids was signif, decreased only at 1,410 ug/L, but no residue information is available for this
1000 Inc	ersoll CG, FJ Dwyer, and TW May	Environ Tox & Chem 09:1171-1181	Daphnia magna	Water flea	Selenium	25	MG/KG	Growth	ED24	Water	Whole Body	Larval	Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	conc. However, reproductive/developme occurred]
					Colonium								Southwestern to south-central Canada, Northwestern to north-central US; ponds,	Pite at a	- 1
1990 Ing	ersoll, C.G., F.J. Dwyer and T.W. May	Environ Tox & Chem 09:1171-1181	Daphnia magna	Water flea	Selenium	2.5	MG/KG	Growth	LOED	Absorption	Whole Body	Immature	small lakes, clear and weedy waters Southwestern to south-central Canada.	Feeds on algae and similar organisms	24% Decrease in weight gain.
					1		1		100				Northwestern to north-central US; ponds.		No effect on number of total young and
1990 Ing	ersoll, C.G., F.J. Dwyer and T.W. May	Environ Tox & Chem 09:1171-1181	Daphnia magna	Water flea	Selenium	2.5	MG/KG	Reproduction	NOED	Absorption	Whole Body	Immature	small lakes, clear and weedy waters	Feeds on algae and similar organisms	time to first brood.
													Southwestern to south-central Canada, Northwestern to north-central US; ponds,		Significant increase in blomass over
1993 La	sser, J.M., T.J. Canfield and T.W.	Environ Tox & Chem 12:57-72.	Daphnia magna	Water flea	Selenium		3 MG/KG	Growth	LOED	Combined	Whole Body	Immature	small lakes, clear and weedy waters	Feeds on algae and similar organisms	controls - a hormetic effect at lowest do
1000 C	-												Southwestern to south-central Canada,		Tissue concentration was not found to
1000	de DC AW Velobi	Arch Emiron Contam Toylool 20-274-279	Danhaia magaa	Water flea	Salanium	1 9	42 MG/KG	Mortality	I Dos	Water	Whole Body	Adult	Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	significant. This mortality was shown at Sulfate concentration of 0.
1996 05	ale RS, AW Knight	Arch Environ Contam Toxicol 30:274-279	Deplina magna	भ्य ताल गाल त	Selenium		42 MG/NG	Mortanty	LUSS	vv acei	Whole Body	Podur	Southwestern to south-central Canada,	reeus on asyste ono suman organisms	Stimulatory effect on size of offspring (t length of offspring) [Survival of daphnid was signif, decreased only at 1,410 ug/ but no residue information is available i
						1							Northwestern to north-central US; ponds,		this conc. However,
1990 ling	persoll CG, FJ Dwyer, and TW May	Environ Tox & Chem 09:1171-1181	Daphnia magna	Water flea	Selenium	4.	22 MG/KG	Growth	ED104	Water	Whole Body	Larval	small takes, clear and weedy waters Southwestern to south-central Canada, Northwestern to north-central US; ponds,	Feeds on algae and similar organisms	reproductive/development occurred]
1990 Ing	ersoll, C.G., F.J. Dwyer and T.W. May	Environ Tox & Chem 09:1171-1181	Daphnia magna	Water flea	Selenium	4.5	22 MG/KG	Growth	NOED	Absorption	Whole Body	Immature	small takes, clear and weedy waters	Feeds on algae and similar organisms	No Effect On Growth (weight)
1004 A	almo, J., R.S. Ogle and A.W. Knight	Arch Environ Contam Toxicol 27:441-448	Chironomus decorus	Midge	Selenium		4 MG/KG	Growth	ED68	Combined	Whole Body	Eag	Bottom dwelling in tubes in shallow ponds or lakes	Adults non-feeding; larvae utilize microorganisms small bits of detritus	68% Decreased body weight
1004	anto, o., reo. Ogio and retr. tanger	Padri Cimini Comani Tonco El 141140	Crimonomas accords		Colonian						Trillio Cody		Southwestern to south-central Canada,	The state of the s	Intrinsic rate of natural increase (Survividaphnids was signif. decreased only at 1,410 ug/L, but no residue information
1990 Inc	gersoll CG, FJ Dwyer, and TW May	Environ Tox & Chem 09:1171-1181	Daphnia magna	Water flea	Selenium	6	34 MG/KG	Reproduction	n FD11	Water	Whole Body	Larval	Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	available for this conc. However, reproductive/development occurred]
1000 11	proof 0.0, 1 0 0.1, 101, and 111 mg		September 1100g to		Goldman								Southwestern to south-central Canada.	1 5500 Sti organi di ta dirittida di giornati s	Stimulatory effect on size of offspring length of offspring) [Survival of daphni was signif, decreased only at 1,410 ug but no residue information is available
1990 Ing	gersoll CG, FJ Dwyer, and TW May	Environ Tox & Chem 09:1171-1181	Daphnia magna	Water flea	Selenium	6.	34 MG/KG	Biochemical	ED117	Water	Whole Body	Larval	Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	this conc. However, reproductive/development occurred] Adult [Survival of daphnids was signif, decreased only at 1,410 ug/L, but no
- 1		1.07		1010				- 1	-		11.0	0.10	Southwestern to south-central Canada,	1 - 1-	residue information is available for this
1000 In	gersoll CG, FJ Dwyer, and TW May	Environ Tox & Chem 09:1171-1181	Daphnia magna	Water flea	Salanium		34 MG/KG	Growth	ED36	Water	Whole Body	Larval	Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	conc. However, reproductive/developm occurred]
1330 85	gradin oci, r o binyor, and r v may	Enteron Fox & Others 68.777 1-1101	Duprimu magna	Transition.	Outriditi		5-YIIICETCC	Ciowai	LDOU	VV ditter	Wildle body	Laiva	Southwestern to south-central Canada.	recus on aigae and similar organisms	Total young produced [Survival of dap was signif, decreased only at 1,410 ug but no residue information is available
													Northwestern to north-central US; ponds,		this conc. However,
1990 In	gersoll CG, FJ Dwyer, and TW May	Environ Tox & Chem 09:1171-1181	Daphnia magna	Water flea	Selenium	6.	34 MG/KG	Reproductio	n ED47	Water	Whole Body	Larval	small lakes, clear and weedy waters	Feeds on algae and similar organisms	reproductive/development occurred]
													Southwestern to south-central Canada,		Young/AFRD -available female reproductive days [Survival of daphnid was signif. decreased only at 1,410 up but no residue information is available
1990 in	gersoll CG, FJ Dwyer, and TW May	Environ Tox & Chem 09:1171-1181	Daphnia magna	Water flea	Selenium	6	34 MG/KG	Reproductio	n ED47	Water	Whole Body	Larval	Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	this conc. However, reproductive/development occurred]
								-		-	Whole Body	Corvo	Southwestern to south-central Canada,	reeds on argue and annual organisms	Day first gravid [Survival of daphnids w signif, decreased only at 1,410 ug/L, b residue information is available for this
1990 ln	gersoll CG, FJ Dwyer, and TW May	Environ Tox & Chem 09:1171-1181	Daphnia magna	Water flea	Selenium	6	34 MG/KG	Reproductio	n ED47	Water	Whole Body	Larval	Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	conc. However, reproductive/developm occurred]
													Southwestern to south-central Canada, Northwestern to north-central US; ponds,		
1990 In	gersoll, C.G., F.J. Dwyer and T.W. May	Environ Tox & Chem 09:1171-1181	Daphnia magna	Water flea	Selenium	6.	34 MG/KG	Growth	ED36	Absorption	Whole Body	Immature	small lakes, clear and weedy waters Southwestern to south-central Canada, Northwestern to north-central US; ponds,	Feeds on algae and similar organisms	36% Decrease in weight gain.
1990 In	gersoll, C.G., F.J. Dwyer and T.W. May	Environ Tox & Chem 09:1171-1181	Daphnia magna	Water flea	Selenium	6.	з4 МС/КС	Reproductio	n LOED	Absorption	Whole Body	Immature	small takes, clear and weedy waters	Feeds on algae and similar organisms	Decrease in total young and young pe female. Delayed time to first brood.
	obbs, M.G., D.S. Cherry and J. Cairns, Jr		Chlorella vulgaris	Algae - Green	Selenium		9 MG/KG	Growth	LOED		Whole Body	A14	Cosmopolitan; Needs stable surface on	The second secon	Significant reduction in population
										Absorption		NA	which to grow Southwestern to south-central Canada, Northwestern to north-central US; ponds,	Not applicable	blomass. Intrinsic rate of natural increase [Survidaphnids was signif, decreased only ε 1,410 ug/L, but no residue information available for this conc. However,
	gersoll CG, FJ <u>Dwyer</u> , and TW May	Environ Tox & Chem 09:1171-1181	Daphnia magna	Water flea	Selenium		0.2 MG/KG	Reproductio		Water	Whole Body	Larval	small lakes, clear and weedy waters Southwestern to south-central Canada, Northwestern to north-central US; ponds,	Feeds on algae and similar organisms	reproductive/development occurred] Day first gravid [Survival of daphnids signif. decreased only at 1,410 ug/s, bresidue information is available for thicone. However, reproductive/developments of the cone.
1990 ln	gersoll CG, FJ Dwyer, and TW May	Environ Tox & Chem 09:1171-1181	Daphnia magna	Water flea	Selenium	10	0.2 MG/KG	Reproductio	n ED37	Water	Whole Body	Larval	small lakes, clear and weedy waters	Feeds on algae and similar organisms	occurred] Adult [Survival of daphnids was signif. decreased only at 1,410 ug/L, but no
1990 In	gersoll CG, FJ Dwyer, and TW May	Environ Tox & Chem 09:1171-1181	Daphnia magna	Water flea	Selenium	10	0.2 MG/KG	Growth	ED42	Water	Whole Body	Larval	Southwestern to south-central Canada, Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	residue information is avaitable for this conc. However, reproductive/developm occurred

Table E-6 ERED Results for Benthic Organisms: Selenium

Year	Author	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc Wet	Conc_Units	Effect Class	Toxicity Measu	re Exposure Route	Species Body Part	Species Start Lifestage	Species Habitat	Species Feeding Behavior	Comments
								1		T				T	young/AFRD [Survival of daphnids was
		}	ļ	}		l I		1			i			į.	signif decreased only at 1,410 ug/L. but n
		ì	i			l I							Southwestern to south central Canada.	k	residue information is available for this
- 1		1	1	1	1	1 1	1	1.	1 -	1	1		Northwestern to north central US, ponds	1	conc However, reproductive/development
1990	Ingersoll CG, FJ Dwyer, and TW May	Environ Tox & Chem 09,1171-1161	Daphnia magna	Water flea	Selenium	10.2	MG/KG	Reproduction	ED71	Water	Whole Body	Larvai	small lakes, clear and weedy waters	Feeds on algae and similar organisms	оссилес)
			1										i		Total young produced (Survival of daphni
				1				1			i				was signif decreased only at 1,410 ug/L.
				1							1		Southwestern to south-central Canada		but no residue information is available for
		L	Ł	tara a			L	L		L.	L.,		Northwestern to north-central US ponds.	L	this conc. However,
1990	Ingersoll CG, FJ Dwyer, and TW May	Environ Tox & Chem 09:1171-1181	Daphnia magna	Water flea	Selenium	10.2	MG/KG	Reproduction	ED/2	Water	Whole Body	Larval	small lakes, clear and weedy waters	Feeds on algae and similar organisms	reproductive/development occurred)
											1		Southwestern to south-central Canada Northwestern to north-central US: ponds.		Į.
			b	Water flea	le		l	Growth	l-out			l		F4	420 Daniero II ii ciata asia
1990	Ingersoli, C.G., F.J. Dwyer and T.W. May	Environ Lox & Chem 09 1171-1181	Daphnia magna	Water flea	Setentum	10.2	MG/KG	Growin	ED42	Absorption	Whole Body	Immature	small lakes, clear and weedy waters Southwestern to south-central Canada	Feeds on algae and similar organisms	42% Decrease in weight gain.
										1	1		Northwestern to south-central Canada.		Over 70% decrease in total young and young per female, Delayed time to first
4000		E T E Cham 20	Dantau mana	Water Hea	Selenium		MG/KG	D	EDZO			I		F4	
1990	Ingersoil, C.G., F.J. Dwyer and T.W. May	Environ Lox & Chem 09:11/1-1181	Daphnia magna	At gret upp	Selenium	102	MG/KG	Reproduction	ED/G	Absorption	Whole Body	Immalute	small lakes, clear and weedy waters	Feeds on algae and similar organisms	blood
										1			Southwestern to south central Canada,	1	
			la	Water flea	la		l		NOED		L	l	Northwestern to north central US, ponds.	L	
1990	Ingersoli, C.G., F.J. Dwyer and T.W. May	Environ Fox & Chem 09 11/1 1181	Dephnia magna	Ax siat lies	Sejenium	10.2	MG/KG	Mortality	NOFO	Absorption	Whole Body	Immalure	small lakes, clear and weedy waters Cosmopolitan, shore dweller in temperate	Feeds on algae and similar organisms Predaceous feed on small swimming	No Effect On Mortality Significant Reduction in Population
	D-1	Factor Vay 8 Cham 15 040 243	Brachlonus calvolflorus	Rotter	Setenium		MG/KG	Growth	LOED	C	terrain Park	Ĺ			
1996	Dobbs, M.G. D.S. Cherry and J. Cairns, Ji	Environ Lox & Chem 15:340:347	Brachionus carycinorus	Homer	Selenium	-12	MG/KG	Growin	LOFO	Combined	Whole Body	NA	ponds, poorly vegetated	Invertebretes, larvae Adutts non-teeding; larvae utilize	Biomass
*****	Marian M. C. and A. Mr. Mariana	Arch Environ Contam Toxicol 25:365-370	Chironomus deserve	Midge	Setenium		MG/KG	Mortality	LD50	Absorption	Whole Body	L	Bottom dwelling in tubes in shallow ponds or takes		Lethal To 50% Of Animals in 48 Hours
1993	Maier, K.J and A.W Knight	Arch Environ Contam Diocol 25:300-370	Chironomus decorus	IMIGG8	Selenium	12.6	MG/KG	Monality	LUSU	Absorption	Myole Rook	Larval		microorganisms small bits of detritus	Lennal to 50% Of Animals in 48 Hours
		L	Brachlonus catycitiorus	Roller			MG/KG	Monally	LD100	la		l	Cosmopolitan, shore dweller in temperate	Predaceous, feed on small swimming	
1996	Dobbs, M.G. D.S. Cherry and J. Cairns, J.	LERWICK TOX & CHUIT 15'34U-347	Brachionus carycitiorus	Hotter	Selenjum	15	MG/KG	Monality	LD100	Combined	Whole Body	INA	ponds, poorly vegetated	Invertebrates, larvae	100% Mortality in 10 days
		Arch Emiron Comam Toxicol 25:365:370	C	Midde	Setenium		MGMG	Monathy	1.050	Abserotion		L .	Bottom dwelling in tubes in shallow ponds for takes	Adults non-feeding; larvae utilize	L
1993	Maler, K.J. and A.W. Knight	VICE FUNDS COMPLY 1 036C01 52,362-310	Childhomas Decolus	MICH	Seleumin	 	MUKU	Morianty	Trose	Absorption	Whole Body	(Larva)		microorganisms small bits of detritus	Lethal To 50% Ot Animals in 48 Hours
			1	1					1			1	Southwestern to south central Canada,		
	Besser, J,M T J Canfield and T W.	F	D	h.,	C-11 -		MG/KG		NOED		l	l	Northwestern to north-central US, ponds,		No difference in blomass compared to
1993	Lapoint	Environ Tox & Chem 12 57-72	Daphnis magna	Water ties	Selenium	20.4	MG/KG	Growth	MOED	Combined	Whole Body	Immature	small lakes, clear and weedy waters	Feeds on algae and similar organisms	controls.
	Besser J.M. T.J. Cambeld and T.W.		1	1		I	1	1	1				Southwestern to south-central Canada,	1	1
			h	l	Selenium	l	L	l	LOED	L	L	I.	Northwestern to north central US; ponds.	L	L
1993	Lapoint	Environ Tox & Chem 12:57-72	Daphnia magna	Water flea	Selenium	1 296	MG/KG	Mortality	ILOED	Combined	Whole Body	Immature	small lakes, clear and weedy waters	Feeds on alose and similar prospisms	Mortality measured as decreased biomas

Table E-7
ERED Results for Benthic Organsims: Zinc

Author	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc_Wet	Conc_Units	Effect Class	Toxicity Measure	Exposure Route	Species Body Part	Species Start Lifestage	Species Habitat	Species Feeding Behavior	Comments
												Southwestern to south-central Canada, Northwestern to north-central US; ponds.		# offspring/adult - Argued that 10 organisms/exposure = 10 replicate
De Schamphelaere KAC, M Canli, V Van Lierde, I Forrez, F Vanhaecke, CR Janssen	Aquat Toxicol 70:233-244	Daphnia magna	Water flea	Zinc	11.12	MG/KG	Reproduction	LOED	Water	Whole Body	NA	small lakes, clear and weedy waters Southwestern to south-central Canada.	Feeds on algae and similar organisms	organism per concentration # offspring/adult - Argued that 10
De Schamphelaere KAC, M Canli, V Van						100					200	Northwestern to north-central US; ponds,	a en penn on	organisms/exposure = 10 replicat
Jerde, I Forrez, F Vanhaecke, CR Janssen	Aquat Toxicol 70:233-244		Water flea	Zinc		MG/KG	Reproduction	ED60	Water	Whole Body	NA	small lakes, clear and weedy waters	Feeds on algae and similar organisms	organism per concentration
Mirenda, R.J.	Bull Environ Contam Toxicol 37:387-394	Orconectes virilis	Craylish	Zinc	12.7	MG/KG	Mortality	NOED	Absorption	Whole Body	Adult	Not Specified Southwestern to south-central Canada.	Not Specified	No significant increase in mortali
De Schamphelaere KAC, M Canli, V Van Lierde, I Forrez, F Vanhaecke, CR Janssen	Aguat Toylool 70:233-244	Daphnia magna	Water flea	Zinc	16.8	MG/KG	Mortality	NOED	Water	Whole Body	NA	Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	Argued that 10 organisms/exposureplicates of 1 organism per cond
De Schamphelaere KAC, M Canll, V Van	Adda 10x100170.203-244	Deprina magna	Water nea	Lino	10.0	Inditto	The runny	11000				Southwestern to south-central Canada, Northwestern to north-central US; ponds,		Growth weight - Argued that 10 organisms/exposure = 10 replicat
Lierde, I Forrez, F Vanhaecke, CR Janssen	Aquat Toxicol 70:233-244	Daphnia magna	Water flea	Zinc	16.8	MG/KG	Growth	NOED	Water	Whole Body	NA	small lakes, clear and weedy waters Southwestern to south-central Canada,	Feeds on algae and similar organisms	organism per concentration time to brood - Argued that 10
De Schamphelaere KAC, M Canli, V Van Lierde, I Forrez, F Vanhaecke, CR Janssen	Aquat Toxicol 70:233-244	Daphnia magna	Water flea	Zinc	16.8	MG/KG	Reproduction	NOED	Water	Whole Body	NA	Northwestern to north-central US; ponds, small lakes, clear and weedy waters	Feeds on algae and similar organisms	organisms/exposure = 10 replica organism per concentration
De Schamphelaere KAC, M Canli, V Van		S		710.		BIMG/KG	Reproduction	FDee	Water	Whole Body	NA.	Southwestern to south-central Canada, Northwestern to north-central US; ponds,	Foods on algae and similar experience	# offspring/adult - Argued that 10 organisms/exposure = 10 replication organism per concentration
Lierde, I Forrez, F Vanhaecke, CR Janssen King CK, MC Dowse, SL Simpson, DF Jolley	Aquat Toxicol 70:233-244	Daphnia magna Mysella anomala	Water flea Bivalve	Zinc		BIMG/KG	Mortality	ED62	Combined	Whole Body	Adult	small lakes, clear and weedy waters Not Specified	Feeds on algae and similar organisms Not Specified	organism per concentiation
King CK, MC Dowse, SL Simpson, DF	Arch Environ Contam Toxicol 47:314-323		- Continue to	Zinc		BIMG/KG	Mortality	LD62	Combined	Whole Body	Adult	Not Specified	Not Specified	
Jolley	Arch Environ Contam Toxicol 47:314-323	Mysella anomala	Bivalve	Zinc	1	BIMG/KG	IMORTANTY	LD62	Combined	Whole Body	Adult	Widely distributed in North America in permanent bodies of water with submerged	Not opecined	
Borgmann, U., and W.P. Norwood King CK, MC Dowse, SL Simpson, DF	Can J Fish Aquat Sci 54:1046-1054	Hyalella azteca	Amphipod - Freshwater	Zinc	19.5	5 MG/KG	Mortality	LD25	Absorption	Whole Body	Juvenile	vegetation	Detritivore	calc wet from dry using default
Jolley	Arch Environ Contam Toxicol 47:314-323	Australonerels ehlersi	Polychaete	Zinc	2	0 MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Not Specified	Not Specified	LOED for growth is based on inc
Grout, J.A. C.D. Levings	Mar Environ Res 51,265-288	Myllius edulis	Mussel	Zinc	2	5 MG/KG	Growth	LOED	Water	Whole Body	Juvenile	Intertidal zone on rocks, pilings and flats; may extend to depths over 40 ft.	Filter plankton, diatoms, bottom vegetation	length of juveniles as well as we Increases.
Grout, J.A. C.D. Levings	Mar Environ Res 51,265-288	Mytilus edulis	Mussel	Zinc	2	6 MG/KG	Mortality	LOED	Water	Whole Body	Juvenile	intertidal zone on rocks, pilings and flats; may extend to depths over 40 ft.	Filter plankton, dialorns, bottom vegetation	
		Contract of the contract of th	mussei	ZIIIO	-							Intertidal zone on rocks, pilings and flats;		LOED for development is based
Grout, J.A. C.D. Levings	Mar Environ Res 51,265-288	Mytilus edulis	Mussel	Zinc	2	6 MG/KG	Development	LOED	Water	Whole Body	Juvenile	may extend to depths over 40 ft. Intertidal zone on rocks, pilings and flats;	Filter plankton, diatoms, bottom vegetation	condition index of the surviving
St-Jean SD, SC Courtenay, RW Parker	Water Qual Res J Can 38(4):647-666	Mytilus edulis	Mussel	Zinc	2	6 MG/KG	Mortality	NOED	Combined	Whole Body	Adult	may extend to depths over 40 ft.	Filter plankton, diatoms, bottom vegetation	
	. 227											Intertidal zone on rocks, pilings and flats;		Length - Growth in test animals in direct proportion to proximity effluent plume which was deem not the contaminants, but the in
St-Jean SD, SC Courtenay, RW Parker	Water Qual Res J Can 38(4):647-666	Mytitus edulis	Mussel	Zinc	2	6 MG/KG	Growth	NOED	Combined	Whole Body	Adult	may extend to depths over 40 ft.		amounts of nutrients.
Ahsanullah M, AR Williams	Mar Biol 108:59-65	Allorchestes compressa	Amphipod	Zinc	2	8 MG/KG	Growth	LOED	Water	Whole Body	Juvenile	Not Specified	Not Specified	Weight
Ahsanullah M, AR Williams King CK, MC Dowse, SL Simpson, DF	Mar Biol 108:59-65	Allorchestes compressa	Amphipod	Zinc	2	8 MG/KG	Survival	LOED	Water	Whole Body	Juvenile	Not Specified	Not Specified	
olley	Arch Environ Contam Toxicol 47:314-323	Mysella anomala	Blvalve	Zinc	3	0 MG/KG	Mortality	LD65	Combined	Whole Body	Adult	Not Specified Northern U.S,southern Canada; widely	Not Specified Larvae feed on microorganisms, small	12% Mouthpart deformities (39
Martinez EA, BC Moore, J Schaumloffel, N		Chironomus tentans				8 MG/KG		LOFF	Combined	Whole Body	-	distributed on bottoms of streams, lakes, ponds	animals in sediments, detritus; adults non- feeding	in controls); Zn concentrations that of the LOED had fewer del
Dasgupta Mirenda, R.J.	Environ Tox & Chem 20(11)2475-2481 Bull Environ Contam Toxicol 37:387-394		Midge Craylish	Zinc		2 MG/KG	Development Mortality	LD23	Absorption	Whole Body	Adult	Not Specified	Not Specified	23% Significant increase in mo
Mirenda, R.J.	Bull Environ Contam Toxicol 37:387-394	Orconectes virilis	Craylish	Zinc	37,	8 MG/KG	Mortality	LD43	Absorption	Whole Body	Adult	Not Specified	Not Specified	43% increase in mortality.
												Widely distributed in North America in permanent bodies of water with submerger		
Borgmann, U., and W.P. Norwood	Can J Fish Aquat Sci 54:1046-1054	Hyalella azleca	Amphipod - Freshwater	Zinc	40,	3 MG/KG	Mortality	LD25	Absorption	Whole Body	Juvenile	vegetation Widely distributed in North America in permanent bodies of water with submerger	Detritivore	calc wet from dry using default
Borgmann U, WP Norwood	Can J Fish Aquat Sci 54:1055-1063	Hyalella azleca	Amphipod - Freshwater	Zinc	49.0	MG/KG	Mortality	LD25	Combined	Whole Body	Immature	vegetation Widely distributed in North America in	Detritivore	M1-Tapwaler
Borgmann, U., and W.P. Norwood	Can J Fish Aquat Sci 54:1046-1054	Hyalella azleca	Amphipod - Freshwater	Zinc	50.	2 MG/KG	Mortality	LD50	Absorption	Whole Body	Juvenile	permanent bodies of water with submerger	Detritivore	calc wet from dry using default
B	0-15-1-1-10-15-10-10-10-1							NOED				Widely distributed in North America in permanent bodies of water with submerger	1	
Borgmann, U., and W.P. Norwood	Can J Fish Aquat Sci 54:1046-1054	Hyalella azteca	Amphipod - Freshwater	Zinc	53.	.6 MG/KG	Mortality	NOED	Absorption	Whole Body	Juvenile	vegetation Widely distributed in North America in	Detritivore	calc wet from dry using default
Borgmann U, WP Norwood	Can J Fish Aquat Sci 54:1055-1063	Hyalella azteca	Amphipod - Freshwater	Zinc	54.	9 MG/KG	Mortality	LD45	Combined	Whole Body	Immature	permanent bodies of water with submerger vegetation	Detritivore	M3-Tapwater
Kaltala S King CK, MC Dowse, St. Simpson, DF	Water Sci Tech 20:23-32	Mytilus edulis	Mussel	Zinc	55.	.8 MG/KG	Survival	NOED	Water	Soft Tissue	Adult	intertidal zone on rocks, pilings and flats; may extend to depths over 40 ft.	Filter plankton, diatoms, bottom vegetation	-
Jolley	Arch Environ Contam Toxicol 47:314-323	Nephtys australiensis	Polychaete	Zinc	6	MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Not Specified	Not Specified	
Borgmann, U., and W.P. Norwood	Can J Flsh Aquat Sci 54:1046-1054	Hyalella azteca	Amphipod - Freshwater	7inc	60	.8 MG/KG	Mortality	LD67	Absorption	Whole Body	Juvenile	Widely distributed in North America in permanent bodies of water with submerger yegetation	Detritivore	cale wat from day union default
Sorginani, C., Sila IV.S IVOI IIOOG	0 tall 24 tall 24 tall 001 04, 1040 1004	I Ifaiona acrood	pringrigue - ricommuter	Lino	1	Juniorica	Imortany	CDOI	Puscipilon	Willole Body	Soverine	Widely distributed in North America in permanent bodies of water with submerger	Deuthyore	calc wet from dry using default
Borgmann, U., and W.P. Norwood Mirenda, R.J.	Can J Fish Aquat Sci 54;1046-1054 Bull Environ Contam Toxicol 37:387-394	Hyalella azteca Orconectes virilis	Amphipod - Freshwater Crayfish	Zinc Zinc		.8 MG/KG .2 MG/KG	Mortality Mortality	NOED LD61	Absorption Absorption	Whole Body Whole Body	Adult	vegetation Not Specified	Detritivore Not Specified	calc wet from dry using default 61% Increase in mortality.
Burbldge, F.J., D.J. Macey, J. Webb and V Talbot	Arch Environ Contam Toxicol 26:466-472.	Myllus edulis	Mussel	7inc		.4 MG/KG	Mortality	NA	Combined		Adult	Intertidal zone on rocks, pilings and flats;		
				ZING			Mortality	NA.	Combined	Whole Body	Adult	may extend to depths over 40 ft. Widely distributed in North America in permanent bodies of water with submerge	Filter plankton, diatoms, bottom vegetation	7.5% Mortality In 14 Days
Borgmann, U., and W.P. Norwood King CK, MC Dowse, SL Simpson, DF	Can J Fish Aquat Sci 54:1046-1054	Hyalella azteca	Amphipod - Freshwater	Zinc	72	.7 MG/KG	Mortality	LD25	Absorption	Whole Body	Adult	vegetation	Detritivore	calc wet from dry using default
Jolley King CK, MC Dowse, SL Simpson, DF	Arch Environ Contam Toxicol 47:314-323	Nephtys australiensis	Polychaete	Zinc	8	80 MG/KG	Mortality	LD05	Combined	Whole Body	Adult	Not Specified	Not Specified	
Jolley King CK, MC Dowse, St. Simpson, DF	Arch Environ Contam Toxicol 47:314-323	Nephtys australiensis	Polychaete	Zinc	8	MG/KG	Mortality	LD07	Combined	Whole Body	Adult	Not Specified	Not Specified	
Jolley	Arch Environ Contam Toxicol 47:314-323	Tellina deltoidalis	Bivalve	Zinc		MG/KG	Mortality	LD10	Combined	Soft tissue	Adult	Not Specified	Not Specified	
Mirenda, R.J.	Bull Environ Contam Toxicol 37:387-394	Orconectes virilis	Craylish	Zinc	85	.6 MG/KG	Mortality	LD23	Absorption	Hepatopancreas	Adult	Not Specified Widely distributed in North America in permanent bodies of water with submerge	Not Specified	23% Significant increase in m
Borgmann, U., and W.P. Norwood	Can J Fish Aqual Sci 54:1046-1054	Hyalella azteca	Amphipod - Freshwater	Zinc	90	.6 MG/KG	Mortality	LD50	Absorption	Whole Body	Adult	permanent bodies of water with submerge vegetation	Detritivore	calc wet from dry using defaul
De Schamphelaere KAC, M Canli, V Van Lierde, I Forrez, F Vanhaecke, CR Jansse	n Aquat Toxicol 70:233-244	Pseudokirchneriella subcapitata		Zinc	5	98 MG/KG	Growth	NOED	Water	Whole Body	NA	L. L. C. Tepi	Training to this line	Rate
									1					
De Schamphelaere KAC, M Canli, V Van Lierde, I Forrez, F Vanhaecke, CR Jansse		Pseudokirchneriella subcapitata				8 MG/KG	Growth	NOED	Water	Whole Body				

Table E-7 ERED Results for Benthic Organsims: Zinc

Author	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc_Wet	Conc_Units	Effect Class	Toxicity Measure	Exposure Route	Species Body Part	Species Start Lifestage	Species Habitat	Species Feeding Behavior	Comments
King CK, MC Dowse, SL Simpson, DF	Arch Environ Contam Toxicol 47:314-323	Norhtwe australianele	Polychaete	7inc	100	MG/KG	Mortality	NOED	Combined	Whole Body	Adult	Not Specified	Not Specified	
Jolley	Arch Environ Contam 1 0x001 47:314-323	repritys austranetists	Polychaete	ENIO	100	marita	mortunity	NOLD	Odinbinos	Trinois Body		Widely distributed in North America in		
Description of the Control of the Co	Can J Fish Aguat Sci 54:1046-1054	Hyalella azteca	Amphipod - Freshwater	7inc	105.8	MG/KG	Mortality	LD100	Absorption	Whole Body	Adult	permanent bodies of water with submerged vegetation	Detritivore	calc wet from dry using default %
Borgmann, U., and W.P. Norwood	Can J Fish Aquat Sci 54:1046-1054	Ртушена адгеса	Amphipod - Freshwater	ZHC	105.6	WG/NG	Withteliny	LD100	Pasoipiion	Whole body	Addit	Widely distributed in North America in	Delititore	
	and the second second										to on the same	permanent bodies of water with submerged vegetation	Detritivore	M2-Tapwater
Borgmann U, WP Norwood	Can J Fish Aquat Sci 54:1055-1063	Hyalella azteca	Amphipod - Freshwater	Zinc	117.1	MG/KG	Mortality	LD100	Combined	Whole Body	Immature	Widely distributed in North America in	Detritivore	M2-1 apwater
11				1			178.7	1.12	100	P. I		permanent bodies of water with submerged		
Borgmann, U., and W.P. Norwood	Can J Fish Aquat Sci 54:1046-1054	Hyalella azleca	Amphipod - Freshwater	Zinc	117.8	MG/KG	Mortality	LD100	Absorption	Whole Body	Juvenile	vegetation Widely distributed in North America in	Detritivore	calc wet from dry using default
_												permanent bodies of water with submerged		
Borgmann, U., and W.P. Norwood	Can J Fish Aquat Sci 54:1046-1054	Hyalella azleca	Amphipod - Freshwater	Zinc	117.8	MG/KG	Mortality	LD40	Absorption	Whole Body	Adult	vegetation	Detritivore	calc wet from dry using default
2771	il a contract of the contract											Introduced; spread to all Great Lakes, some rivers in Atlantic, Mississippi		
Kraak, M.H.S., M. Toulssaint, D. Lavy, and												drainage basins; attaches to rocks, other	Filter feeder; phytoplankton, bacteria, fine	No Increase in mortality. Resid
C. Davids.	Environ Pollut 084:139-143.	Dreissena polymorpha	Mussel - Zebra	Zinc	120	MG/KG	Mortality	NOED	Absorption	Whole Body	Adult	hard surface	detrital particles	determined from graph and is
												Introduced; spread to all Great Lakes, some rivers in Atlantic, Mississippi	difference of the second	Mussel Bioconcentrations take
Kraak MHS, YA Wink, SC Stuijfzand, MC			11 11	2 2								drainage basins; attaches to rocks, other	Filter feeder; phytoplankton, bacteria, fine	Musssels dies during experim
Buckert-de Jung, CJ de Groot, W Admiraal	Aquat Toxicol 30;77-89	Dreissena polymorpha	Mussel - Zebra	Zinc	120	MG/KG	Mortality	NOED	Water	Soft Tissue	NS	hard surface	detrital particles	Rate
Burbidge, F.J., D.J. Macey, J. Webb and V.			Mussel	Zinc	400	MG/KG	Mortality	LD100	Combined	Whole Body	Adult	Intertidal zone on rocks, pilings and flats; may extend to depths over 40 ft.	Filter plankton, diatoms, bottom vegetation	100% Mortality in 14 Days
Talbot	Arch Environ Contam Toxicol 26:466-472.	Mytitus edulis	Mussei	Zinc	130	MG/NG	Mortanty	LD100	Combined	Whole Body	Adult	Introduced; spread to all Great Lakes,	Piner plankion, diajonis, bottom vegetation	100% Wortday in 14 Days
Kraak, M.H.S., Y.A. Wink, S.C. Stulltzand,				1							11	some rivers in Atlantic, Mississippi	9.3 7787	
M.C. Buckert-de Jong, C.J. De Groot and				_								drainage basins; attaches to rocks, other	Filter feeder; phytoplankton, bacteria, fine	No Effect Co Madelle
W. Admiraal King CK, MC Dowse, SL Simpson, DF	Aquat Toxicol 30:77-89	Dreissena polymorpha	Mussel - Zebra	Zinc	140	MG/KG	Mortality	NOED	Absorption	Whole Body	Adult	hard surface	detrital particles	No Effect On Mortality
Jolley	Arch Environ Contam Toxicol 47:314-323	Soletellina alba	Bivaive	Zinc	160	MG/KG	Mortality	LD70	Combined	Soft tissue	Adult	Not Specified	Not Specified	
Ging CK, MC Dowse, SL Simpson, DF		The second second second	Di-t-	21		140.4/5	Mandalla	1040	Combined					11-
Jolley Timmermans KR, W Peeters, and M.	Arch Environ Contam Toxicol 47:314-323	Tellina deltoidalis	Bivalve	Zinc	180	MG/KG	Mortality	LD10	Combined	Soft tissue	Adult	Not Specified	Not Specified	
Tonkes	Hydrobiologia 241:119-134.	Chironomus riparius	Midge	Zinc	180	MG/KG	Growth	ED44	Water	Whole Body	Larval	Not Specified	Not Specified	Delay in larval growth
Timmermans KR, W Peeters, and M.				20		140.44		I Dec	W-1	Whele De 1	Land			7171711
Tonkes King CK, MC Dowse, St. Simpson, DF	Hydrobiologia 241:119-134.	Chironomus riparius	Midge	Zinc	183	MG/KG	Mortality	LD10	Water	Whole Body	Larval	Not Specified	Not Specified	-
Jolley	Arch Environ Contam Toxicol 47:314-323	Tellina deltoidalis	Bivaive	Zinc	250	MG/KG	Mortality	LD65	Combined	Soft tissue	Adult	Not Specified	Not Specified	
				70	079	MG/KG	Madallha	ED28	Combined	Whole Body	Larval	Bottom dwelling in tubes in shallow ponds or lakes	Adults non-feeding; larvae utilize microorganisms small bits of detritus	4ppt also exposed to Zn and Chironomus maddeni
Bidwell JR, JR Gorrie	Environ Pollut 139-206-213	Chironomus decorus	Midge	Zinc	2/3	JMG/KG	Mortanty	EDS9	Combined	w note body	Larvai	Bottom dwelling in tubes in shallow ponds	Adults non-feeding; larvae utilize	growth = dry wt; 4ppt also ext
Bidwell JR, JR Gorrie	Environ Pollut 139-206-213	Chironomus decorus	Midge	Zinc	275	MG/KG	Growth	ED62	Combined	Whole Body	Larval	or lakes	microorganisms small bits of detritus	and Cu Chironomus madden
												Widely distributed in North America in		Water, sed, benthic inverts € 6.6-8.3. Lab tests w/seds and
Borgmann U, WP Norwood, TB								1				permanent bodies of water with submerged		Beakers lowered pH to 4, use
Reynoldson, and F Rosa	Can J Fish Aquat Sci 58:950-960	Hyalella azteca	Amphipod - Freshwater	Zinc	289.02	MG/KG	Mortality	LD25	Water	Whole body	Adult	vegetation	Detritivore	cones instead.
Diducti ID ID Coul-	F	Oblessesses de sesse	Midge	Ziee	21	MG/KG	Mortality	ED70	Combined	Whole Body	Lanual	Bottom dwelling in tubes in shallow ponds or lakes	Adults non-feeding; larvae utilize microorganisms small bits of detritus	8ppt also exposed to Zn and Chironomus maddeni
Bidwell JR, JR Gorrie	Environ Pollut 139-206-213	Chironomus decorus	Midge	ZINC	314	4 MG/KG	Mortality	ED/0	Combined	Whole Body	Larval	Bottom dwelling in tubes in shallow ponds	Adults non-feeding; larvae utilize	growth = dry wt; 8ppt also ex
Bidwell JR, JR Gorrie	Environ Pollut 139-206-213	Chironomus decorus	Midge	Zinc	314	MG/KG	Growth	ED59	Combined	Whole Body	Larval	or takes	microorganisms small bits of detritus	and Cu Chironomus madder
				-				NOED	O	un i n	lt	Bottom dwelling in tubes in shallow ponds		Oppt also exposed to Zn and Chironomus maddeni
Bidwell JR, JR Gorrie	Environ Pollut 139-206-213	Chironomus decorus	Midge	Zinc	38	2 MG/KG	Mortality	NOED	Combined	Whole Body	Larval	or lakes Bottom dwelling in tubes in shallow ponds	microorganisms small bits of detritus Adults non-feeding; larvae utilize	growth = dry wt; Oppt also ex
Bidwell JR, JR Gorrie	Environ Pollut 139-206-213	Chironomus decorus	Midge	Zinc	38:	2 MG/KG	Growth	ED50	Combined	Whole Body	Larval	or lakes	microorganisms small bits of detritus	and Cu Chironomus madder
King CK, MC Dowse, St. Simpson, DF	And Service Control Today 47.044.000	Talling deliteration	Bivalve	Tine	40	MG/KG	Mortality	LD65	Combined	Soft tissue	Adult	Not Specified	Not Specified	
Jolley Timmermans KR, W Peeters, and M.	Arch Environ Contam Toxicol 47:314-323	Tellina deltoidalis	Divaive	ZINC	92	UMG/NG	Wortamy	LU65	Combined	Son ussue	Addit	Trun opecined	Prof Specified	
Tonkes	Hydrobiologia 241:119-134.	Chironomus riparius	Midge	Zinc	52	4 MG/KG	Mortality	LD6	Water	Whole Body	Larval	Not Specified	Not Specified	
												Introduced; spread to all Great Lakes, some rivers in Atlantic, Mississippi		Mussel Rioconcentrations ta
Kraak MHS, YA Wink, SC Stuijfzand, MC				1			1			1		drainage basins; attaches to rocks, other	Filter feeder; phytoplankton, bacteria, fine	Musssels dies during experi
Buckert-de Jung, CJ de Groot, W Admiraal	Aquat Toxicol 30:77-89	Dreissena polymorpha	Mussel - Zebra	Zinc	60	0 MG/KG	Mortality	LD100	Water	Soft Tissue	NS	hard surface	detrital particles	Rate
												Introduced; spread to all Great Lakes, some rivers in Atlantic, Mississippi		
Kraak MHS, YA Wink, SC Stulltzand, MC					A 4 1 2	1					-	drainage basins; attaches to rocks, other	Filter feeder; phytoplankton, bacteria, fine	Mussel Bioconcentrations tal
Buckert-de Jung, CJ de Groot, W Admiraal	Aquat Toxicol 30:77-89	Dreissena polymorpha	Mussel - Zebra	Zinc	62	0 MG/KG	Mortality	LD50	Water	Soft Tissue	NS	hard surface	detrital particles	Musssels dies during experi
Kraak, M.H.S., Y.A. Wink, S.C. Stuijfzand,												Introduced; spread to all Great Lakes, some rivers in Atlantic, Mississippi	C.E. C. C.	
M.C. Buckert-de Jong, C.J. De Groot and												drainage basins; attaches to rocks, other	Filter feeder; phytoplankton, bacteria, fine	
W. Admiraal	Aquat Toxicol 30:77-89	Dreissena polymorpha	Mussel - Zebra	Zinc	62	1 MG/KG	Mortality	LOED	Absorption	Whole Body	Adult	hard surface	detrital particles	56% Mortality
Kraak, M.H.S., Y.A. Wink, S.C. Stuilfzand.												Introduced; spread to all Great Lakes, some rivers in Atlantic, Mississippi	Tel as	
M.C. Buckert-de Jong, C.J. De Groot and												drainage basins; attaches to rocks, other	Filter feeder; phytoplankton, bacteria, fine	No Effect On Weight Gain C
W. Admiraal	Aquat Toxicol 30:77-89	Dreissena polymorpha	Mussel - Zebra	Zinc	62	1 MG/KG	Growth	NOED	Absorption	Whole Body	Adult	hard surface	detrital particles	Mussels
Bidwell JR, JR Gorrie	Environ Pollut 139-206-213	Chironomus decorus	Midge	Zinc	70	6 MG/KG	Mortality	ED85	Combined	Whole Body	Larval	Bottom dwelling in tubes in shallow ponds or lakes	Adults non-feeding; larvae utilize microorganisms small bits of detritus	8ppt also exposed to Zn and Chironomus maddeni
												Bottom dwelling in tubes in shallow ponds	Adults non-feeding; larvae utilize	growth = dry wt; 8ppt also ex
Bidwell JR, JR Gorrie	Environ Pollut 139-206-213	Chironomus decorus	Midge	Zinc	70	6 MG/KG	Growth	ED65	Combined	Whole Body	Larval	or lakes	microorganisms small bits of detritus	and Cu Chironomus madde
Mann RM, M Grosell, A Blanchini, CM												Northern U.S, southern Canada; widely distributed on bottoms of streams, lakes,	Larvae feed on microorganisms, small animals in sediments, detritus; adults non-	Results are from a mixture of
Wood	Environ Tox & Chem 23:388-395	Chironomus tentans	Midge	Zinc		5 MG/KG	Growth	NOED	Combined	Whole Body	Egg	ponds	feeding	lead.
Ritterhoff, J., and G-P. Zauke Ritterhoff, J., and G-P. Zauke	Aquat Toxicol Aquat Toxicol	Themisto libellula	Mesoplanidon amphipod	Zinc	95	1 MG/KG 1 MG/KG	Mortality	LD50 LD50	Water	Whole Body	Adult	Open boreal ocean	Omnivore-diatorns, small crustacean	
	Proposit I 000001	Themisto abyssorum	Mesoplankton amphipod	ZINC	95	I MAKG	Mortality	LU50	Water	Whole Body	Adult	Open boreal ocean Northern U.S,southern Canada; widely	Omnivore-diatoms, small crustacean Larvae feed on microorganisms, small	
Mann RM, M Grosell, A Blanchini, CM								1				distributed on bottoms of streams, lakes,	animals in sediments, detritus; adults non-	Results are from a mixture of
Wood Ditterboff L and C.P. Zauko	Environ Tox & Chem 23:388-395	Calanus harestoreus	Midge Calanald cananad	Zinc		7 MG/KG	Growth	NOED	Combined	Whole Body	Egg	ponds	feeding	lead.
Ritterhoff, J., and G-P. Zauke Ritterhoff, J., and G-P. Zauke	Aquat Toxicol Aquat Toxicol	Calanus hyperboreus Calanus hyperboreus	Calanoid copepod Calanoid copepod	Zinc		O MG/KG	Mortality	LD50	Water	Whole Body Whole Body	Adult	Open boreal ocean Open boreal ocean	Omnivore-diatoms, small crustacean	low concentration exposure
					De la post	101-01	The second y	The second second	A STATE OF THE PARTY OF	THORE DODY	OR OTHER DESIGNATION AND ADDRESS.	Open boreas ocean	Omnivore-diatoms, small crustacean	High concentration exposure
Macinnis-Ng CMO and PJ Ralph	Jni Exp Mar Biol & Ecol 302:63-83	Zostera capricorni	Ell grass	Zinc	1	3 MG/KG	Cellular	NOED	NS	Root		NS	NS	Chlorophyll fluorescence, Pl
Filho GMA; CS Karez; LR Andrade; Y	1000													Algal plants accumulate zine
Yoneshigue-Valentin; WC Pfeiffer	Ecotoxicol Environ Sal 37:2223-228	Hypnea musciformis	Hypnea musciformis	Zinc	1	4 MG/KG	Growth	ED80	Water	Whole Body	NA	Aquatic	Photosynthesis	absorbe the most zinc, thou impacted in all species
CALLED THE STATE OF THE STATE O	300 01 10000 1000		1				1	1	1	- India Dody	1		- notodynunosio	Algal plants accumulate zine
Filho GMA; CS Karez; LR Andrade; Y	Footonical Environ C-1 07 0000 00	Dading many	Dedies we	Ties		0140410		FDee						absorbe the most zinc, thou
Yoneshigue-Valentin; WC Pfeiffer	Ecotoxicol Environ Sal 37:2223-228	Padina gymnospora	Padina gymnospora	Zinc	1	8 MG/KG	Growth	ED29	Water	Whole Body	NA .	Aquatic	Photosynthesis	impacted in all species Algal plants accumulate zinc
Filho GMA; CS Karez; LR Andrade; Y	A													Algal plants accumulate zing absorbe the most zinc, thou
Yoneshigue-Valentin; WC Pfeiffer MacFarlane, G.R. and M.D. Burchett	Ecotoxicol Environ Saf 37:2223-228	Enteromorpha flexuosa	Enteromorpha flexuosa	Zinc	2	0 MG/KG	Growth	ED52	Water	Whole Body	NA	Not Specified	Other	impacted in all species
	Mar Environ Res 54: 65-84	Avicennia marina	Grey Mangrove	Zinc	9	0 MG/KG	Growth	LOED	Combined	Leaf	Yearling	Littoral		Total Mass.

Table E-7 ERED Results for Benthic Organisms: Zinc

Author	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc. Wel	Conc_Units	Effect Clave	Toxicity Measure	Exposure Route	Species Body Parl	Species Start Lifestage	Species Habitat	Species Feeding Behavior	Comments
MacFerlane, G.R. and M.D. Burchell	Mar Environ Res 54, 65-84	Avicennia marina	Grey Mangrove	Zinc	30	MG/KG	Growth	LOED	Combined	l eal	Yearling	Littoral		Seedling Height
MacFarlane, G.F. and M.D. Burchett	Mar Environ Res 54, 65-84	Avicennia marina	Grey Mangrove	Zinc	30	MG/KG	Growth	LOED		Lea	YearHing	Littoral		Total Lead area
MacInnis Ng CMO and PJ Raiph	Jnl Exp Mar Blol & Ecol 302.63-83	Zostera capricorni	Ell grass	Zinc	33.4	MG/KG	Celtular	NOED		Root		NS	NS	Total chlorophyli Bolany Bay
MacInnis-Ng CMO and PJ Raiph	Jni Exp Max Blol & Ecol 302.63-63	Zostera capricorni	Eli grass	Zinc	33,4	MG/KG	Cellular	NOED		Rool		NS	NS	Total chlorophyli. Sydney Harbor
MacInnis Ng CMO and PJ Ralph	Jnf Exp Mar Biol & Ecol 302 63-83	Zoslera capricorni	Ell grass	Zinc	35 6	MG/KG	Cellular	NOED	NS	Load		NS .	NS	Chlorophyll fluorescence Pinwate
Macinillating Ones and Farinapin	OTHER DIGITAL COOK SECTION	Edward Captions		-					1.00					Algai plants accumulate zinc; brow
Uho GMA: CS Karez, i.R. Andrade, Y			ł							i				absorbe the most zinc, though gro
roneshique Vetentin, WC Ptelffer	Ecotoxical Environ Sal 37:2223-228	Padina gymnospora	Padina dymnospora	7Inc	40	MG/KG	Growth	ED19	Water	Whale Body	NA	Aquatic	Photosynthesis	impacted in all structes
Torresingue Valoriari, TV o T Torres	31.04			-					1					Algal plants accumulate zinc; brow
Filho GMA CS Karez, LP Andrade Y	1	1	1	1 1	i .	1	ĭ	ì	1 '	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	1	Y	absorbe the most zinc, though gro
Variable of Market Line Control	Ecotoxical Environ Sal 37:2223-228	Ulva lactuca	Ulva lactuca	7inc	40	MG/KG	Growth	FD42	Water	Whole Body	NA.	Aquatic	Photosynthesis	Impacted in all Species
Yoneshigus-Valentin, WC Pfeitfer	ECONOCCI ENVIOR SE 37:2223-228	Owa racioca	Ore ractors	2,110		Tina na	-		1. 0101	TT HOLD DOG!		- Trapanic		Algal plants accumulate zinc. bron
IN OUR COV I DA-drade V														absorbe the most zinc, though gro
Fitho GMA, CS Karez, LFI Andrade, Y	F	1	Ulva lactuca	710	40	MG/KG	Growth	EDAS	Water	Whole Body	L.A	Aquatic	Photosynthesis	impacted in all species
roneshigue-Valentin, WC Pfeitler	Ecoloxicol Environ Saf 37 2223-228	Ulva lactuca	Olya lactoca	Ziiic		THOUSE .	- Jarowiii	ED43	AA Biel	AA HOIG DOOM	in .	Aduatic	T IIOIOSYIIIIOSIS	Milipacia in as apostes
												1		Algai plants accumulate zinc; bros
ilho GMA, CS Karez, LFI Andrade: Y			L	L	٠	l	l	L					L	absorbe the most zinc, though gro
oneshigue-Valentin, WC Pleiffer	Ecotoxicol Environ Saf 37,2223-228	Spyridia illamentosa	Spyridia filamentosa	Zinc	40	MG/KG	Growth	ED18	Water	Whole Body	NA	Aquatic	Photosynthesis	Impacted in all species
acinnis Ng CMO and PJ Raiph	Jnl Exp Mar Biol & Ecol 302:63-83	Zestera capricorni	Ell grass	Zinc	43.2	MG/KG	Cellular	NOED	NS	Loai		NS	NS	Total chlorophyll. Bolany Bay
		1			1							i		Total chlorophyll. Sydney Harbor.
		1			1							ì		Sydney H. demonstrated initial et
		i		1									1	were non existent by 96 h eventh
					1								i .	highest metals occurred
cinnis-Ng CMO and PJ Raiph	Jrif Exp Max Blol & Ecol 302 53 83	Zostera capricorni	Ell grass	Zinc	43.2	MG/KG	Cellular	NOED	NS	Leaf		NS	NS	Sydney>Pittwater>Bolany Bay
				1	-		1	_						Algal plants accumulate zinc; bro
hn GMA CS Kerez I R Andrade, Y		1	1	1										absorbe the most zinc, though g
	Ecotoxicol Environ Sat 37,2223 228	Enteromorpha flexuosa	Enteromorpha llexuosa	7inc		MGKG	Growth	ED27	Water	Whole Body	lua .	Not Specified	Other	Impacted in all species
neshigue Valentin, WC Pfeitler	200 DANGE ENTROIT ON 31,2223 228	CHIOTOTHOIPHE HEADOSE	- Het Attro-bite Hevring	1200	— · · · · · ·		1		11 0101		ř	aprecimed		Algal plants accumulate zinc; br
- Cata Co Vene 10 Andred V			1	1	1	1	1	1	1	I		1	1	absorbe the must zinc, though g
o GMA: CS Kerez, LR Andrade, Y	England England Pat 02 00 0		Humana musciformi-	7/80		MG/KG	Geowth	FD90	l	huban Boo.	la a	Acustic	Photosynthesis	Important to all enough
eshigue Valentin; WC Pteiffer	Ecotoxicol Environ Sat 37-2223-228	Hypnea musciformis	Hypnea musciformis	THIC	- ex	ALLIANCE .	Growth	ED90	Water	Whole Body	nn .	Aquatic	Pholosynthesis	Impacted in all species
	· ·	l l	1	Į.	Į.	l .	1	1	1	1	1	1	1	Algal plants accumulate zinc; bi
no GMA, CS Karez; LR Andrade Y	L	1	l	1			la		1.	1	L.	L	la	absorbe the most zinc, though o
neshigue-Valentin, WC Pteiffer	Ecoloxicol Environ Sai 37 2223-228	Spyridia filamentosa	Spyridia iliamentosa	Zinc	- 60	MG/KG	Growth	ED45	Water	Whole Body	INA	Aquatic	Photosynthesis	Impacted in All Species
			1	1	1	1	1	1	1	_				Algai plants accumulate zinc; bi
no GMA CSKarez, LR Andrade, Y	1	1	1	1	1	1	1	1	1	I	I	1		absorbe the most zinc though
eshigue-Valentin, WC Pfeiffer	Ecotoxicol Environ Sat 37:2223-228	Enteromorpha flexuosa	Enteromorpha flexuosa	Zinc	100	MG/KG	Growth	ED41	Water	Whole Body	NA	Not Specified	Other	Impacted in all species
			1	Τ		1	1	I	1			1		Algai plants accumulate zinc; b
io GMA. CS Karez, LR Andrade Y		1	1	1	1	1	t	1	1	1	l .	1	1	absorbe the most zinc, though o
neshigue-Valentin, WC Ptelffer	Ecotoxicol Environ Sat 37 2223-228	Padina gymnospora	Padina gymnospera	2Inc	100	MG/KG	Growth	ED86	Waler _	Whole Body	NA	Aquatic	Photosynthesis	Impacted in All Species
rearrigue reaction, 11 o : tou -	200000000000000000000000000000000000000	. Contraction					1		110.01	7				Impacted in All Species Atgai plants accumulate zinc b
o GMA CSKarez, LR Andrade Y					1		1		t					absorbe the most zinc, though
ashters Veterile HC PtoHor	Ecotoxicol Environ Sat 37 2223 226	Padina gymnospora	Padina gymnospora	710c	100	MGAG	Growth	ED26		Whole Body	lu.	Aqualic	Photosynthesis	Impacted in all species
eshigue Valeniin, WC Ptelfler	Ecologicol Eliwion Sal 37 2223 228	Pacina gyinnospora	Padina gyinnospora	ZINC	····	U MOUNCE	GIOWAII	EUZO	Water	W nois bouy	NA	prepare	Priorosynthesis	Alesi steete accumulate das h
					1		1	1						Algai plants accumulate zinc b
o GMA, CS Karez; LR Andrade, Y			L	I.	l		la	l			i.		.	absorbe the most zinc, though o
eshigue-Valentin, WC Ptetfer	Ecotomicol Environ Sal 37,2223-228	Spyridia filamentosa	Spyridia filamentosa	Zinc	100	MG/KG	Growth	ED13	Water	Whole Body	NA _	Aquatic	Photosynthesis	Impacted in All apacies
]	}	1	1	1	1	1	ì))	1	1	1	Algal plants accumulate zinc b
o GMA: CS Karez LFI Andrade. Y					1	1					1			absorbe the most zinc, though
neshique Valentin, WC Pfeiffer	Ecotoxicol Environ Sal 37 2223-228	Ulva lactuca	Uiva factuca	Zinc	120	MG/KG	Growth	ED60	Water	Whole Body_	NA	Aquatic	Photosynthesis	Impacted in all species
						1	T							Algai plants accumulate zinc b
io GMA, CS Karez, LR Andrade Y				!	ł						ſ			absorbe the most zinc. though
eshigue-Valentin, WC Pleiffer	Ecoloxical Environ Sal 37 2223-228	Spyricia filameniosa	Spyridia Illamentosa	Zinc	1 120	MG/KG	Growth	FD29	Water	Whole Body	NA .	Aqualic	Photosynthesis	Impacted in all species
				-		1		~-		,				Algai plants accumulate zinc: b
no GMA CSKarez, LPIAndrade Y	1	1	1	1	3	1	1	Į.	Į.	l .	1	ļ	1	absorbe the most zinc, though
	Ecological Engrap Soc 23,0222 228	Carronnum Micondula	Sargaceum (Illoandule	Zinc	1 144	MG/KG	Growth	ED31	Water	ut/hote Pode	3.4	Aguatta	Photocunthonic	impeded in all species
reshigue Valentin, WC Ptelffer	Ecological Environ Sal 37-2223-226	Sargassum filipendula	Sargassum filipendula	Zinc		olimania.	Citoriii	EDST	Water .	Whole Body	<u> </u>	Aqualic	Photosynthesis	impacted in all species
				(1							1	1	Algal plants accumulate zinc; be absorbe the most zinc, though
e GMA, CS Karez, LR Andrade Y	E			l	1		Growth	F C C C C				l	b	absorbe the most zinc, though
neshigue Valentin, WC Ptelffor	Ecotoxicol Environ Sal 37,2223-228	Hypnea muscliornis	Hypnes muscliormis	Zinc	199	MG/KG	Carowill	ED88	Water	Whole Body	NA	Aquatic	Photosynthesis	Impacted in all species
												1		Algal plants accumulate zinc b
n GMA CSKarez, LR Andrade, Y	L				1	1	I_					1		absorbe the most zinc though
eshigue-Vatentin, W.C. Ptetter	Ecotoxicol Environ Sal 37 2223-228	Spyridia filamentosa	Spyridia Mamentosa	Zinc	141	O MG/KG	Grown	ED27	Water	Whole Body	NA	Aquatic	Photosynthesis	impacted in all species
			ì							ł				Algai plants accumulate zinc; b
o GMA CSKarez LR Andrade Y			į.							i				absorbe the most zinc, though
wshigue-Valentin, WC Pfelfler	Ecotoxical Environ Std 37 2223-228	Ulva lactuca	Ulva lactuca	Zinc	150	6 MG/KG	Growth	ED50	Water	Whole Body	NA	Aquatic	Photosynthesis	Ilmnacted in All SDecies
			1				1	1	1	Τ	T			Algai plants accumulate zinc: b
no GMA, CS Karez, LR Andrade; Y	- 1	1		1	1		1		1	1		1	i	absorbe the Most zinc, though
eshique Valentin, W.C. Pfeiffer	Ecutoxicol Environ Sat 37 2223-228	Padina gymnospera	Padina gymnospora	Zinc	160	OMG/KG	Growth	ED81	Water	Whole Body	NA	Aquatic	Photosynthesis	Impacted in All species
	1,500 57 2220-220		1	+		1	T	-	1		1			Algai plants accumulate zinc t
o GMA CSKarez LR Andrade Y				1	1	1	1	1	1	1	1	1		absorbe the most zinc, though
neshigue Valentin, W.C. Pteiller	Ecotoxicol Environ Sal 37.2223-228	Sargessum Hilpendula	Sargassum filipendula	Zinc	16	DIMG/KG	Growth	ED36	Waler	Whole Body	NA.	Aqualic	Photosynthesis	Impacted to all species
	31.2223-226	20-20-20-1 (inhounting	Tamberran III hausen	12.00	1 10			1.000	14 4161	, itole pody	···	r-goalit	uicayiiiiesia	Impacted in all species
o GMA CS Kerez, LR Andrade, Y	i i	1		1	1	1	1	1	1	1		1	1	Algai plants accumulate zinc. b
	Ecoloxicol Environ Sal 37 2223 228	Hyonea muscilormis	Hypnea musclformis	7100		MENC	Growth	Enec	la	arkata Oc. 4	N.A.	la	Obeteratheric	absorbe the most zinc, though
neshigue Vatentin, WC Plaiffer	Econosico Environ Sai 37 2223 228			ZINC	100	MG/KG	Growth	EDBP	Water	Whole Budy	INA	Aqualic	Photosynthesis	Impacted in all species
Farlane, G.R. and M.O. Burchell	Mar Environ Res 54 65-84	Avicennia marina	Grey Mangrove	Zinc		MG/KG	Growth	LOED	Combined	Floot	Yearling	Littoral	 _	Total Mass
Farlane G.R. and M.D. Burchett	Mer Environ Res 54 65-84	Avicennia marina	Grey Mangrove	Zinc	160	MG/KG	Growth	LOED	Combined	Rool	Yearling	Littaral		Total Lead Area
Feriene, G.R. and M.D. Burchett	Mar Environ Res 54 65-84	Avicennia merina	Grey Mangrove	Zinc	160	0 MG/KG	Growth	LOED	Combined	Root	Yearling	[littoral		Seeding Height
Farlane, G. R. and M.D. Burchell	Mar Environ Res 54 65-84	Avicennia marina	Grey Mangrove	Zinc	10	O MG/KG	Growth	LOED	Combined	Root	Yearling	Lifforal		Emergence.
			1	1	1 -		1			}				Aigal plants accumulate zinc b
oGMA, CSK srez LR Andrade Y	i i	1		1	1	1	1	1	1	1	1	1		absorbe the most zinc, though
eshigue Valentin; W.C. Ptetffer	Ecological Environ Sal 37:2223-228	Enteromorpha flamosa	Emeromorpha flexuosa	Zinc	18/	OMGMG	Growth	ED46	Water	Whole Body	NA	Not Specified	Other	Impacted in Ali species
			1			1		:						Algat plants accumulate zinc; I
o GMA. CS Karez LP Andrade Y		1		1	1	1	1	1	1	1	1	1	1	absorbs the most zing though
eshigue-Valentin, WC Pleiffer	Ecotoxicol Environ Sel 37 2223-228	Ulya lactuca	Ulva lactuca	Zinc	1 10	омсика	Growth	ED61	Waler	Whole Body	NA.	Aquatic	Photoconthesis	absorbe the most zinc though
Sanger Tuesday, Front States	223-220	O.ya racioca	John Michigan	Tarrier.	+'8	S. RANG	- CANOMIN	1201	Waler	THOSE DOUY	P101	Aquatic	Photosynthesis	impacted in all species
o GMA: CS Karez, LFL Andrade Y			1	1	1	1	1	1	1	1	1	1	1	Algal plants accumulate zinc; t
	Ecotoxical Emittee Cot 03:0000 000	Dadina mmrass	Dadles arresses	7100	1	duces	larmer.	FDes		L	l.,	I	la	absorbe the most zinc, though
eshigue-Valentin, WC Pfetfler	Ecotoxical Environ Sai 37-2223-228	Padina gymnospora	Padina gymnospora	ZINC	18	0 MG/KG	Growth	ED83	Water	Whole Body	NA	Aquelic	Photosynthesis	Impacted in all species
	I	I		1	1	1	1	1		1	_			Algai plants accumulate zinc; t
oGMA CS Karez, LR Andrade Y	L	I	L	1	1	L	L	1	1	1	1	t		absorbe the most zinc, though
eshigue Valentin; WC Pfeltler	Ecoloxicol Environ Sal 37:2223 228	Spyricka filementosa	Spyridla filamentosa	Zinc		O MG/KG	Growth	E070	Water	Whole Body	INA.	Адианс	Photosynthesis	Impacted in all species
	1				$\overline{}$			Γ		T	T***			Algal plants accumulate zinc I
o GMA, CS Karez LR Andrade Y	1	1	1	1	1	1	1	1	t	1	1	1	1	when brights accommiss the state of
	Ecoloxical Environ Sal 37-2223-228	Sargassum Illipendula	Sargassum filipendula	Zinc	40	омсжа	Growth	EDS3	lware.	Whole Bork	ÍNA	Agriatio	Chatasanthasia	absorbe the most zinc, though
neshione-Valentin: W.C. Plettler		- Ingention		1 ****	10	1		1-0-2	Water	Whole Body	int.	Aquatic	Photosynthesis	Impacted in all species
neshigue-Valentin; WC Pleitfer	· l	ł	1	1	}	1	1	1	1	1	1	(Algai plants accumutate zinc.
neshigue-Valentin; WC Pletter	J	Earnasium suinand da	Carriage life fillnands	7100]	oluca.	Grand	Enco	L	L	i	l	la	absorbe the most zinc though
neshigue-Valentin; WC Pletter no GMA, CS Kerez, LR Andrade: Y		Sargassum filipendula	Sargassum filipendula	LYING	+ - 40	OMG/KG	GIOWIN	ED62	Water	Whole Body	NA	Aqualic	Photosynthesis	impacted in all species
neshigue-Valantin; WC Plaitfer no GMA, CS Karez, LR Andrade: Y nashigue-Valentin, WC Pfeliter	Ecotoxical Environ Sat 37,2223-228							1	1	1	1			Algai plants accumulate zinc. t
neshigue-Valentin; WC Plettler na GMA, CS Kerez, LR Andrade: Y neshigue-Valentin, WC Plettler	Ecoloxicol Environ Sal 37,2223-228	\	1	1	1	1	1	1	1		1	ì)	
neshigue-Valentin; WC Pletter io GMA, CS Kerez, LR Andrade: Y neshigue-Valentin, WC Ptelitor io GMA, CS Kerez, LR Andrade, Y			1.	ì	1	1	1_	1	ì	1			1	absorbe the most zinc, though
neshigue-Valentin; WC Pletter no GMA, CS Kerez, LR Andrade: Y	Ecotoxicol Environ Sat 37,2223-228 Ecotoxicol Environ Sat 37,2223-228	Sargasaum filipendula	Sargassum Hilpendula	Zinc	40	0 MG/KG	Growth	ED73	Water	Whale Body	NA	Aquatic	Photosynthesis	absorbe the most zinc, though
neshigue Valantin; WC Platfer og GMA, CS Karez, LR Andrade: Y reshigue Valentin, WC Pfeitter og GMA, CS Karez, LR Andrade, Y neshigue Valentin, WC Pfeitter		Sargessum filipendula	Sargassum Hilipendula	Zinc	40	O MG/KG	Growth	ED73	Water	Whale Body_	NA	Aquatic	Photosynthesis	absorbe the most zinc, though impacted in all species
eshique-Valentin; WC Pleitfer o GMA, CS Kerez. LR Andrade: Y eshique-Valentin, WC Pfeitfer o GMA, CS Karez. LR Andrade, Y		Sargasaum filipendula	Sargassum Hilpendula	Zinc	40	O MG/KG	Growth	ED73	Water	Whole Body_	NA	Aquatic	Photosynthesis	absorbe the most zinc, though

Table E-7 ERED Results for Benthic Organsims: Zinc

feer	Author	Publication Source	Species Scientific Nume	Species Common Name	Analyte Name	Conc_Wel	Conc_Units	Effect Class	Toxicity Messur	Exposure Rout	Species Body Pert	Species Starl Lifeslage	Species Habitat	Species Feeding Behavior	Comments
-+					 	† -		1							Algal plants accumulate zinc brown algae
Filh	o GMA; CS Karez, LFI Andrade Y		1	į.											absorbe the most zinc though growth was
1997 Yon	eshigue-Valentin, WC Ptetfer	Ecological Environ Sal 37:2223-228	Spyricka filamentosa	Spyridia filamentosa	Zinc .	. 60	MG/KG _	Growth .	ED71	Water	Whole Body	NA _	Aquatic	Photosynthesis	impacted in all species
_						П .								1	Algal plants accumulate zinc, brown algae
(Filh	o GMA: CS Karez; LFI Andrade, Y														absorbe the most zinc though growth was
1997 Yon	eshigue Valentin, WC Pteliter	Ecolonical Environ Sal 37:2223-228	Spyridia Illamentosa	Spyridia tilamentosa	Zinc	190	MGKG _	Growth	E073	Water	Whate Body	NA	Aquatic	Photosynthesis	Impacted in all species
\neg		I		1						T					Algal plants accumulate zinc, brown algae
Filh	u GMA CS Karez, LR Andrade Y			1									1	[absorbe the most zinc, though growth wa
1997 Yon	eshique Valentin; WC Pfeiller	Ecological Environ Sat 37 2223-228	Padina gymnospora	Padina gymnospora	2inc	160	0 MG/KG	Growth	E092	Water	Whole Body	NA	Aguatic	Photosynthesis	Impacted in all species
\neg		1	·												Algai plants accumulate zinc brown algae
Fith	o GMA, CS Karez, LR Andrade Y		1										1	ł	absorbe the most zinc, though growth wa
1997 You	eshigue Valentin; WC Pfeiffer	Ecotoxical Environ Sat 37 2223-228	Pagina gymnospora	Padina ovrnnospora	Zinc	180	O MG/KG	Growth	ED91	Water	Whole Body	INA	Aguatic	Photosynthesis	Impacted in all species

ATTACHMENT F CALCULATION OF PEC QUOTIENTS

Table F-1 PEC-Quotients for Metals (mg/kg) in Sediment Samples Old American Zinc Plant Site, Fairmont City, Illinois

Facility Drainage Ditch Investige Sample ID: Date Collected: Depth (1t - ft) Location PEC	SD-01-0.5 5/31/2006 0 - 0.5 East Ditch 1 PEC-0	SD-02-0.5 5/31/2006 0 - 0.5 East Ditch 2 PEC-Q	SD-05-0.5 5/31/2006 0 - 0.5 East Ditch 1 PEC-Q	SD-05-0.5 5/31/2006 0 - 0.5 East Ditch 1 PEC-Q	SD-07-0.5 6/2/2006 0 - 0.5 West Ditch 2 PEC-Q	\$D-07-0.5/FD 6/2/2006 0 - 0.5 West Ditch 2 PEC-Q	SD-23-0.5 6/2/2006 0 - 0.5 West Ditch 1 PEC-Q	SD-23-0.5/FD 6/2/2006 0 - 0.5 West Ditch 1 PEC-Q	SD-24-0.5 6/1/2006 0 - 0.5 West Ditch 1 PEC-Q	SD-25-0.5 6/1/2006 0 - 0.5 West Ditch 1 PEC-Q	SD-25-0.5/FD 6/1/2006 0 - 0.5 West Ditch 1 PEC-Q	\$D-26-0.5 6/1/2006 0 - 0.5 West Ditch 1 PEC-Q	SD-27-0.5 6/1/2006 0 - 0.5 West Ditch 1 PEC-Q West Ditch	6
Arseric 3: Bartum Cadmium Chromium 111 Copper 155 Lead 3: Selenium Silver 2: Zinc Mercury 11. Mean PECO metals* Rose Creek (investigative Sample	00 na na na 00 870 6.69 4.5 2.2 29 13.18 00 10,000 21.74 1.1 6.1 5.5 11.0	9.3 0.28 320	130 3.94 480	14 0.13 na na 100 0.77 1.7 1.2 0.55 2,600 5.65 2.2 2.00	98 2.97 87 37 7.40 11 0.10 na na 2.200 16.92 1.6 13 5.91 33,000 71.74 0.57 0.52	45 1.36 75 37 7.40 10 0.09 na na 1,800 13.85 0.92 9.7 4.41 23,000 50.00 0.98 0.87	78 2.36 270 130 26.00 21 0.19 na na 1,700 13.06 1.9 13 5.91 14,000 30.43 1.4 1.27 14.41	81 2.45 290	130 3.94 610 630 126.00 61 0.55 na na 5,600 43.08 7.2 33 15.00 40,000 66.96 0.93 0.85	9.3 0.28 120	60 1.82 480	24 0.7 230 64 12.8 19 0.1 na n 810 6.2 1.3 3.8 1.7 21,000 45.8 0.24 0.2	0 61 12.20 7 15 0.14 a na na 3 980 7.54 1.8 3 3.2 1.45 5 20,000 43.48 15,	27 0.82 200
Sample ID: Date Collected: Depth (It - 1) Dec Collected: Depth (It - 1) Dec Collected: Dec	SD-06-0.5 5/31/2005 0 - 0.8 Rose Creek (at-site) PEC-0 33 380 - 2 5 460 92.00 0 74 0.67 0 13.06 1,700 13.06 - 5.5 - 7 2 5.00 25.00 54.35 54.55 52.2	\$50-99-0.5 \$730/2006 0 - 0.5 Ross Creek PEC-0 60 1.82 150 - 100 20.00 20 20 20 20 20 20 1,800 13.85 1,800 13.85 1,900 13.85 15,000 22.61 1,9 1,73 13.7	SD-41 12/12/2006 0 - 0.5 Rose Creek 94 2.65 180 186 9.20 1.1,19 9.33 4,100 31.5 5.9 1.6 1.8 1.45 31,000 67.39 1.6 1.5 1.5 23.6	27 0.25 780 5.20 2,600 20.00 4.6 - 13 5.91	SD-42 12/12/2006 0 - 0.5 Rose Creek PEC-0 72 2.18 200 102.07 513 0.30 2,700 6.33 2,700 20.77 5.2 - 20.77 18 6.18 1,200 2.61 2.8 2.55 22.4	SD-10-0.5 612/2006 0 - 0.5 Ross Creek PEC-0 150 - 1 150 30.00 2 0.22 2 0.22 2 7 - 6.1 13,000 28.26 1.5 1.36 14.4	SD-11-0.5 8/12/2006 0 - 0.5 Rose Creek PEC-Q 10 0.50 140 0.30 22 5.80 23 5.80 23 5.80 24 1.5 1.5 - 1.2 1.5 - 1.2 1.5 0.55 4,800 10.43 0.66 0.60 3.8	SD-12-0.5 6/12/2006 0 - 0.5 Ross Creek PEC-Q 6.0 0.18 160 28 5.60 23 0.21 120 0.92 0.7	SD-12/FD 6/12/2006 0.0 - 0.6* Rose Creek 6.8 0.21 149 7.90 93 7.90 190 1.46 0.7 0.72 0.33 9,400 7.39 0.33 0.30	SD-13-0.5 6/12/2006 0 - 0.5 Hose Creek PEC-Q 140 4.24 250 100 20.00 31 0.20 680 5.23 2.44	\$0.43 12/12/2006 0 - 0.5 Rose Creek 16 0.48 279 28.00 11 0.86 19 1.07 580 4.46 1.9 4.6 3.0 13.6 7,300 15.87 3.4 3.00 6.1	SD-44 12/12/2006 0 - 0.5 Rose Creek PEC-Q 120 3.6 300 15.8 79 15.8 79 0 0.6 750 5.7 2.4 3.7 1.8 5,300 11.5 2.7 2.4 6.5	0 8 7 7 7 	
Sample ID: Date Collected: Depth (ft - ft) Location PEC Arsenic 3 Barium - Cadmium 1 Chromium 11	SD-03-0.5 6/1/2006 0 - 0.6 Ditch along Kingshwy PEC-O 3 3 10 0.30 150 - 38 7.60 0 26 0.24	SD-04-0.5 8/1/2008 0 - 0.8 U Rose Creek (upstream) PEC-Q (upstream) PEC-Q 6.7 0.20 190 - 6.5 1.30 60 0.55	RSD-1 7/17/2007 0-0.5 (0-8*) Rose Creek	FISD-2	RSD-3 7/1/72007 9-0.5 (9-6") Rose Creek Upstream of Facility, west of Kingshiphway & south of Former Swift As Chem PEC-Q 9 0.15 120 9 0.82	RSD-4 7/17/2007 -0-5 (0-8") Rosa Creek - Upstream of Facility, west of Kingahighway & south of Former Swift Aa Chem 95 91 91 989 91 98								
Copper 150 Lead 130 Selenium Silver 2 Zinc 460 Mercury 1.1 Rose Creek Outfall Investigative: Sample ID: Date Collected: Depth (fr - ft) Location PEC	na na na na na na na na na na na na na n	na na na 280 215 3.3	210 1.40 620 4.77 2.7	250 1.87 780 6.00 2.1 2.3 1.05 1300 2.83 4.1 3.73 2.3 SD-17-0.5 6/12/2006 0 - 0.5 Rose Creek Outfall PEC-Q	140 0.93 380 2.92 0.73 2.4 1.09 820 1.78 0.0088 0.01 1.3 SD-18-0.5 6/12/2006 0 - 0.5 Rose Creek Outfall PEC-Q	340 2.27 630 4.85 2.3 2.9 1.32 1600 3.48 4.1 3.73 2.3 TRC-2-S-0-6 7/18/2007 0-0.5 (0-6") Old Cabokia Watershed M PEC-Q	TRC-2-S-8-10 7/18/2007 0.66 - 0.83 (8-10") Old Cahokia Watershed M PEC-Q	TRC-2-S-12-14 778/2007 1.0 - 1.16 (12-14*) Old Caholds Watershed ^[M] PEC-Q	TRC-2-S1-0-6 7/19/2007 0 - 0.5 (0-6") Old Cahokia Watershed ^{NI} PEC-O					
Arsenic 33 Barlum - Cadmium 5 Chromium 15 Chromium 15 Copper 150 Lead 30 Selenium - Silver 2 Zinc 460 Mercury 1,1 Mean PEC-Q metals*	10 430 3.31 0.72	9.7 0.29 250	8.2 0.25 220	20 0.61 120	9,5 0.29 250	160 4.85 400 1,300 260.00 63 0.57 430 2.87 1,600 12.31 10	360 10.91 490 - 2,100 420.00 80 0.73 520 3.47 2,100 16.15 12 - 15 6.82 20,000 43.48 14 12.73 82.46	570 17.27 680 140 28.00 110 1.00 2,800 16.67 5,500 42.31 25 5 25.00 6,600 14.35 120 100.00	61 1.85 320 290 58.00 48 0.44 460 3.07 1,200 9.23 5.6 - 12 5.45 8,600 18.70 3.4 3.09					
Sample ID: Date Collected: Depth (t - ft) Depth (t - ft) Depth (t - ft) Depth (t - ft) Depth (t - ft) Depth (t - ft) Depth (t - ft) Depth (t - ft) Depth (t - ft) Depth (t - ft) Depth (t - ft) Depth (t - ft) Depth (t - ft) Depth (t - ft)	11 0.33 190 43 8.60 15 0.14 na na 380 2.92	\$0.390-0.5 6/1/2006 0 - 0.5 681/2006 0 -	SD-31-0.5 e/1/2006 0 - 0.5 feet Ditch 1 Outfall PEC-Q 200 - 32 6.40 14 0.13 na na 82 0.40 0.89 - 0.24 0.11 7,800 17.17 0.642 0.64 4.8	\$0-32-0.5 67/2006 0 - 0.5 West Ditch 1 Outsell PEC-Q 270	SD-33-0.5 6/1/2006 0 - 0.5 West Ditch 1 Outfell PEC-0 140 - 6.6 1.32 9.6 0.09 na na na 46 0.35 0.5 - 0.25 0.15 890 1.28 0.090 1.28 0.090 1.28 0.090 1.28 0.090 0.000 0.0	\$0-034 6/28/2006 0 - 0.5 Cahokirs Waterahed ^[4] 210	SD-034-D 6/28/2006 0-0.5 Cahokin PPE-O 17 0.52 230 380 76.00 21 0.19 na na 580 4.23 2.5 4.300 53.40 0.18 0.16 3-40 0.18 3-40 0.18	SD-38 12/12/2006 0-0.5 Cahokis 18 0.45 220 140 28,00 21 0.19 1,100 7.33 340 2.62 4.85 3.0 1.96 14,000 30.43 14,000 30.43 113,000 30.43	\$D-39 12/12/2006 0-0.5 Cahokis PEC-Q Waterahed ist PEC-Q 120 0.61 120 25 5.00 15 0.14 280 1.73 240 1.85 4.85 2.10 0.95 3,800 7.61 0.105 0.105	SD-40 12/12/2005 0 - 0.5 Cahokia 11 0.33 140				
Sample ID: Date Collected: Deth (ft - ft) Deth (ft - ft) Deth (ft - ft) Deth (ft - ft)	15 0.45 210 56 11.20 19 0.17 1,800 12.00 220 1.69 1.1	SD-46 12/13/2006 0 - 0.5 ahokis Wetland ^{PI} 19 0.58 250 - 150 30.00 21 0.19 4,200 28.00 4,200 28.00 4,200 28.00 0.00 0.00 0.00 0.00 0.00 0.00	SD-47 12/13/2006 0 - 0.5 cahokia Wetland ³⁹ PEC-Q 19 0.58 220 - 90 18.00 17 0.15 3,400 22.67 420 3.23 1.4 - 1.0 2.5,000 65.35 0.19 0.19 0.7	SD-48 12/13/2006 0 - 0.5 Cahokia Wetland ¹⁰¹ PEC-0 25 0.76 210 - 19 5,300 35.33 670 5.15 1.9 - 1 4.6 2.09 28,000 55.52 0.36 0.33	TWD-02-C-0-6 7/17/2007 0-0.5 (0-6") Old Cahokia Watershed Pl 200 71 14.20 28 0.25 340 2.27 210 1.62 1.8 - 1 0.45 12,000 26.09	TWO-02-C-6-9 7/17/2007 0.5 - 0.75 (6-9") Old Cahokia Watershed N 310 17 3.40 32 0.29 65 0.44 160 1.23 0.7 - 0.56 0.25 1,300 4.13 0.079 0.079	WD-02-C-6-9 DUP 7/17/2007 Co.5-0.75 (6-9")	TWD-02-S-0-6 7/17/2007 0 - 0.5 (0-6") Old Cahokia Waterahad P PEC-0 140 28.00 31 0.28 790 5.27 260 2.00 1.05 - 1 1.2 0.55 16,000 34.78 0.13 0.12	TWD-02-S4-S 7/17/2007 0.5 -0.66 (6-8") OIC Cahokia Watershed N PEC-Q 460					

na: not analyzed

*Denotes background samples

\$ch. Creek = Schoenberger Creek

[2] - Sample collected in wet meadow (welland) between West Ditch Outfall and open water habitat in the Cahokia Creek Watershed.

[3] - Samples collected at southern edge of open water habitat in the Cahokia Creek watershed.

[4] - Reference samples were collected in the open water habitat of the Old Cahokia Creek Watershed (northeast of SW-34).

[5] - Open water area in western portion of the Old Cahokia Creek Watershed beyond West Ditch discharge area

[6] - Wedland and wet meadow area in western half of Old Cahokia Creek Watershed beyond Rose Creek discharge area.

* Based on EPA (2002), only includes arsenic, cadmium, chromium,copper, lead, and zinc.

Table F-1 PEC-Quotients for Metals (mg/kg) in Sediment Samples Old American Zinc Plant Site, Fairmont City, Illinois

West Ditch Out	tfall Refere	nce Sam	nples																										-	_
Sample ID: Date Collected: Depth (ft - ft) Location		PEC	TWD-1-N-0-6 7/17/2007 0 - 0.5 (0-6") Old Cahokia Watershed ^[5]	PEC-O	TWD-1-N-6-8 7/17/2007 0.5 - 0.66 (6-8") Old Cahokia Watershed ^[8]) PEC-Q	TWD-1-C-0-6 7/17/2007 0 - 0.5 (0-6") Old Cahokia Watershed ^[5]	PEC-O	TWD-1-C-6-10 7/17/2007 0.5 - 0.8 (6-10") Old Cahokia Watershed ^[5]	PEC-Q	TWD-1-S-0-6 7/17/2007 0 - 0.5 (0-6") Old Cahokia Watershed [5]	PEC-Q	TWD-1-S-6-9.5 7/17/2007 0.5 - 0.75 (6-9.5") Old Cahokia Watershed [5]	PEC-Q	TWD-02-N-0-6 7/17/2007 0 - 0.5 (0-5") Old Cahokis Watershed [5]	PEC-Q	TWD-02-N-6-7 7/17/2007 0.5 - 0.6 (6-7") Old Cahokia Watershed [9]	PEC-O	TWD-03-N-0-6 7/17/2007 0 - 0.5 (0-6") Old Cahokia Watershed ^[5]	PEC-Q	TWD-03-N-6-8 7/17/2007 0.5 - 0.66 (6-8") Old Cahokia Watershed [5] PEC-	Old C	TWD-03-C-0-6 7/17/2007 0 - 0.5 (0-6") Cahokia Watershed	PEC-O	TWD-03-C-6-8.5 7/17/2007 0.5 - 0.66 (i Old Cahokia Watershed [5]	6-8.5") PEC-Q	TWD-03-S-0-6 7/17/2007 0 - 0.5 (0-6") Old Cahokia Watershed [5]		TWD-03-S-6-8 7/17/2007 0.5 - 0.6 (6-8") Old Cahokia Watershed [5]	PEC-
	Arsenic	33	7.7	0.23	5.8		16	0.48	8.5	0.26	7.1	THE REAL PROPERTY.	11	0.33	10		7	0.21	7.7	0.23		.22	7.3	0.22		0.18	10	0.30	6.2	0.
	Barium	-	250		250		230	***	260		420	**	450		250		240		230		220		270	-	310		210	3-4	320	
1	Cadmium	5	55	11.00	4.1	0.82	44	8.80	16	3.20	90	18.00	15	3.00	32	6.40	44	8.80	28	5.60	18 3.	.60	25	5.00	21	4.20	23	4.60	20	4
	Chromium	110	29	0.26	31	0.28	33	0.30	30	0.27	30	0.27	29	0.26	32	0.29	29	0.26	30	0.27	28 0.	25	29	0.26	28	0.25	20	0.18	29	0
1	Copper	150	61	0.41	32	0.21	53	0.35	34	0.23	130	0.87	47	0.31	61	0.41	57	0.38	51	0.34	35 0.	23	75	0.50	59	0.39	79	0.53	42	0
1	Lead	130	140	1.08	32	0.25	78	0.60	33	0.25	390	3.00	78	0.60	140	1.08	130	1.00	130	1.00	52 0.	40	180	1.38	140	1.08	150	1.15	59	0
	Selenium		1.5	-	1.4		1.6		1.2		2		1,3		1		1		1		1,6	-	2		0.69		1.6		1.2	
	Silver	2.2	0.58	0.26	0.3	0.14	0.35		0.24	0.11	1.5	0.68	0.41	0.19	0.48	0.22	0.43	0.20	0.49	0.22	0.16 0	.07	0.62	0.28	0.5	0.23	0.78	0.35	0.37	0
	Zinc	460	2,000	4.35	350	0.76	2,900	6,30	1,800	3.91	4,600	10.00	1,800		1800	3.91	1800	3.91	1,900	4.13		61	2,700	5.87	1,300	2.83	2,400	5.22		2
	Mercury		0.070	0.06	0.06	0.05	0.076	0.07	0.068	0.06	0.2	0.18	0.076		0.073	0.07	0.08	0.07	0,063	0.06	0.055 0	.05	0.11	0.10	0.067	0.06	0.1		0.072	0
Mean PEC	-O metals*	74.1		2.0		0.42		2.0	0.000	1.4		E 4		1.4	01010	2.1		24		1.0		1.2		2.2		1.5	1	2.0	7	

Rose Creek Outfall	Referenc	e Samp	ples	_													l:									
Sample ID: Date Collected: Depth (ft - ft)			SD-50-0-6 7/19/2007 0 - 0.5 (0-6")		SD-50-8-10 7/19/2007 0.66 - 0.83 (8-10") Old Cahokia Creek		SD-51-DITCH-0-6 7719/2007 0 - 0.5 (0-6") Old Cahokia Watershed- watershed- creek discharge area, adj to Millam Landfill pEC-Q		SD-51-DITCH-8-10 7/19/2007 0.65 - 0.83 (8-10") Old Cahokia Watershed - upgradient of Rose Creek discharge area, adj to Milam Landfill		SD-51-DITCH-12-14 7/19/2007 1.0 - 1.16 (12-14") Old Gahokia Waterahed - upgradient of Rose Creek discharge area, adj to Milam Landfill PEC-Q		TRC-3-S-0-6 7/19/2007 0 - 0.5 (0-6") Old Cahokia Watershed [5]		TRC-3-S-7-9 7/18/2007 0.58-0.75 (7-9	״										
Location	P	Old Cahokia Creek		1											Old Cahokia Watershed ^[6] PEC-Q											
Ca Chri Se	Arsenic Barium admium romium Copper Lead elenium Silver Zinc Mercury	33 5 110 150 130 2.2 460 1.1	4.4 0.11 220 22 4.4(18 0.11 29 0.11 58 0.4(1.1 0.335 0.18 780 1.7(0.13 0.11	3 0 6 9 5 5 0	9.4 280 22 20 41 92 1.9 0.18 1100 0.077	0.28 4.40 0.18 0.27 0.71 0.08 2.39 0.07	400 100 45 98 300 3.8 2.2 1,900	2.27 20.00 0 20.00 0 0.45 0 0.65 2.31 	110 290 330 110 160 650 4.1 3.6 3100 5.3	3.33 66.00 1.00 1.07 5.00 1.64 6.74 4.82	79 520 75 59 600 1,600 14 25 1,600	2.39 15.00 0.54 4.00 12.31 11.36 3.48 16.36	12 300 36 43 230 79 1.4 0.29 1,100 0.18	0.36 7.20 0.39 1.53 0.61 	4.6 250 64 26 170 38 0.85 0.43 1,600 0.073	0.14 										
Mean PEC-Q r	-		1.2	2		1.4		5.0		13.9		6.3		2.1		3.0										
Sample ID: Date Collected: Depth (ft - ft) Location	D	SC.	TRC-1-N-0-5 7/18/2007 0 - 0.5 (0-6") Old Cahokia Watershed ^[6] PEC-Q		TRC-1-N-5-8 7/18/2007 0.5 - 0.66 (6-8") Old Cahokia Watershed ^[6]	PEC-Q	TRC-1-S-0-5 7/19/2007 0 - 0.5 (0-5") Old Cahokia Watershed ^[6]	PEC-Q	TRC-1-S-0-6-D 7/19/2007 0 - 0.5 (0-5") Old Cahokia Watershed ^[6]	PEC-Q	TRC-1-S-6-8 7/19/2007 0.5 - 0.65 (6-8' Old Cahokia Watershed ^[6]) PEC-Q	TRC-2-N-0-6 7/18/2007 Old Cahokia Watershed ^[6]	PEC-Q	TRC-2-N1-0-6 7/17/2007 Old Cahokia Watershed ^[6]	PEC-Q	TRC-2-N1-6-8 7/18/2007 0.5 - 0.56 (6-8") Old Cahokia Watershed ^[4] PEC-Q	TRC-2-C-0-6 7/18/2007 0 - 0.5 (0-6" Old Cahokia Watershed [6]) PEC-Q	TRC-2-C-10-12 7/18/2007 0.83 - 1.0 (10-12") Old Cahokia Watershed ^[6] PE		TRC-3-N-0-6 7/18/2007 0 - 0.5 (0-6") Old Cahokia Watershe	ed PEC-Q	TRC-3-N-0-6/FD 7/18/2007 0.5 - 0.66 (6-8") Old Cahokia Watershed [6]	PEC-Q	TRC-3-N-8-10 7/19/2007 0 - 0.5 (0-6") Old Cahokia Watershed [4] PEC-
Car Chri	Barium dmium omium Copper Lead lenium Silver Zinc	33 5 110 150 130 2.2 460 1.1	5.6 0.17 330	7 2 5 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5,3 290 4,1 22 28 21 1,2 0,405 440 0,052	0.16 0.82 0.20 0.19 0.16 0.18 0.96 0.05		0.58 1.62 0.24 0.24 0.58 0.20 1.61	19 340 7.4 26 35 72 1.3 0.42 740	0.58 1.48 0.24 0.23 0.55 0.19 1.61 0.17	6.1 290 7.4 22 25 17 1.3 0.415 700 0.034	0.18 1.48 0.20 0.17 0.13 0.19 1.52 0.03	2.3 160 0.11 8.3 6.4 9 0.05 0.28 38	0.07 	6.9 170 0.125 14 16 11 0.6 0.32 53 0.033	0.21 0.03 0.13 0.11 0.08 0.15 0.12 0.03	18 0.55 180 0.15 0.03 15 0.14 15 0.10 12 0.09 1.1 0.36 0.16 54 0.12 0.03 0.02	5.6 310 4.8 23 31 33 1.8	0.17 0.96 0.21 0.21 0.25 0.10 0.52 0.05	3.7 250 0.26 18 22 16 0.85 0.335	0.11 0.05 0.16 0.15 0.12 0.15 0.17	0. 1 0. 0.	1.6 0.05 74	1.9 120 0.1 8.3 7.2 9 0.65 0.32 47 0.0091	0.06 0.02 0.08 0.05 0.07 0.15 0.10	2 0. 49 0 0. 4.6 0. 2.8 0. 4.2 0. 0.60 0.31 0. 19 0.0068
Mean PEC-Q n Schoenberger Creek			0.83	3		0.41		0.81		0.78		0.61		0.06		0.11	0.17		0.39		0.13		0.06		0.06	0.
Sample ID: Date Collected: Depth (ft - ft)	PE		SD-20-0.5 6/13/2006 0 - 0.5 Sch. Creek PEC-O		SD-20-0.5/FD 6/13/2006 0.0 - 0.5	PEC-Q	SD-21-0.5 6/12/2006 0 - 0.5 Sch. Creek	PEC-O	SD-36 6/29/2006 0 - 0.5	PEC-Q	SD-037 6/29/2006 0 - 0.5	PEC-Q	SD-22-0.5 6/13/2006 0 - 0.5	PEC-Q	SD-52 7/19/2007 0 - 0.5 (0-6") Schoenberger Creek - west of Old Cahokia western boundary	PEC-Q										
E Cad Chro C Sel	Barium drium drium drium drium drium drium drium 1 copper 1 Lead 1 enium Silver Zinc 4 ercury	33 5 110 150 130 2.2 460 1.1	22 0.58 510		12 480 23 99 na 180 1.9 0.57 930 0.63	0.36 	13 510 27 110 na 160 0.57 980 0.38	0.39 0.15 1.00 na 1.23 0.30 2.13	13 270 19 53 na 70 0.89 0.23 750	0.39 0.10 0.48 na 0.54 0.10 1.63 0.20	15 340 44 230 na 150 1.8 0.96 1,100 0.25	0.45 	12 640 21 250 na 230 1.3 0.86 940 0.30	0.36 0.11 2.27 na 1.77 0.39 2.04 0.27	26 260 80 630 75 180 1.7 1.1 1,800 0.15	0.79 0.43 5.73 0.50 1.38 0.50 3.91 0.14										

entration; nond-detects presented at 1/2 SQL.

*Denotes background samples

*Denotes background samples

Sch. Creek - Schoenberger Creek

[2] - Sample collected in wet meadow (wetland) between West Ditch Outfall and open water habitat in the Cahokia Creek Watershed.

[3] - Samples collected at southern edge of open water habitat in the Cahokia Creek watershed.

[4] - Reterence samples were collected in the open water habitat of the Olid Cahokia Creek Watershed (northeast of SW-34),

[5] - Open water area in western portion of the Olid Cahokia Creek Watershed beyond West Ditch discharge area

[6] - Wetland and wet meadow area in western half of Olid Cahokia Creek Watershed beyond Rose Creek discharge area.

* Based on EPA (2002), only includes arsenic, cadmium, chromium,copper, lead, and zinc.

Table F-2 Estimated Benthic Invertebrate Tissue Concentrations for Cadmium, Lead, and Zinc at all Sediment Sample Locations Old American Zinc Plant Site, Fairmont City, Illinois

Fa	scility Drainage Dit	ch Investigative S	amples														-									00.000				
Da	ample ID: ate Collected: epth (ft - ft)		LOEC TISSUE RESIDUE EFFECT			SD-02-0.5 5/31/2006 0 - 0.5		SD-07-0.5 6/2/2006 0 - 0.5		SD-07-0.5/FD 6/2/2006 0 - 0.5	Estimated	SD-23-0.5 6/2/2006 0 - 0.5	Estimated	SD-23-0.5/FD 6/2/2006 0 - 0.5	Estimated	SD-24-0.5 6/1/2006 0 - 0.5	Estimated	SD-25-0.5 6/1/2006 0 - 0.5	Estimated	SD-25-0.5/FD 6/1/2006 0 - 0.5	Estimated	S0-26-0.5 6/1/2006 0 - 0.5		SD-27-0.5 6/1/2006 0 - 0.5	Estimated	SD-28-0.5 6/1/2006 0 - 0.5	Estimated Tiesus			
Lo	ocation	Site-Specifi Uptake Factor*	LEVEL ^b (mg/kg wet)	Bert.		East Ditch 2	Estimated Tissue Concentration (mg/kg wet) ^c	West Ditch 2	Concentration (mg/kq wet) ^c		Concentration (mg/kg wet) ^c	West Ditch 1	Tissue Concentration (mg/kg wet) ^c	West Ditch 1	Tissue Concentration (mg/kg wet) ^c	West Ditch 1	Tissue Concentration (mg/kg wet) ^c	West Ditch 1	Tissue Concentration (mg/kg wet) ^c	West Ditch 1	Tissue Concentration (mg/kg wet) ⁶	West Ditch 1	Estimated Tissue Concentration (mg/kg wet) ^c	West Ditch 1	Concentration (mg/kg wet) ^c	West Ditch 1	Concentration (mg/kg wet) ^c			
E	Cad	nium 0.00393 Lead 0.00121 Zinc 0.00355	0.59 5.22	-			24 0.02 40 0.05	2 2,2	37 0.0 200 0.4	2 1,8	37 0.02 00 0.36	130	0.09	120 1,800	0 0.08	630 5,600	0.41 1.13	27 3,300	0.02 0.67	650 3,000	0.43 0.61	64 810 21,000	0.04 0.16 12.45		61 0.04 980 0.20	51 730	0.03 0.15			
Ro	ose Creek Investiga	tive Samples	LOEC TISSUE	SD-09-0,5	Concentration	1,8 SD-41	Concentration	7] 33,0 SD-41-D	000 19.5	6 23,00 SD-42	00 13.64	14,000 SD-10-0.5	8.30	15,000 SD-11-0.5	8.89	40,000 SD-12-0.5	23.71	SD-12/FD	4.03	95,000 SD-43	Tissue	SD-44	12.45	20	,000	13,000	0.00			
Da	epth (ft - ft)	Site-Specifi	RESIDUE EFFECT	5/30/2006 0 - 0.5		12/12/2006 0 - 0.5		12/12/2006 0 - 0.5	Estimated Tissue	12/12/2006 0 - 0.5	Estimated Tissue	6/12/2006 0 - 0.5	Estimated Tissue	6/12/2006 0 - 0.5	Estimated Tissue	6/12/2006 0 - 0.5	Estimated Tissue	6/12/2006 0.0 - 0.5°	Estimated Tissue	12/12/2006 0 - 0.5		12/12/2006 0 - 0.5	Estimated Tissue							
Lo	cation	Uptake Factor*	(mg/kg wet)	Rose Creek		Rose Creek		Rose Creek	Concentration (mg/kg wet)°		Concentration (mg/kg wet) ^c	Rose Creek	Concentration (mg/kg wet) ^c	Rose Creek	Concentration (mg/kg wet) ^e	Rose Creek	Concentration (mg/kg wet) ^c	Rose Creek	Concentration (mg/kg wet)°	Rose Creek		Rose Creek	Concentration (mg/kg wet) ^c							
F	Cadr	nium 0.00393 Lead 0.00121 Zinc 0.00355	0.59 5.22 11.12	1,1	100 0.0 800 0.3 000 8.8	77 7 36 4,1 39 31.0		2,6 3 24.0	0.1 000 0.5 000 14.2	3 2,70 3 1,20	10 0.33 00 0.55 00 0.71	180 860 13,000	0.12 0.17 7.71	29 300 4,800	0.02	28 120 2,300	0.02 0.02 1.36	39 190 3,400	0.03 0.04 2.02	580 7,300	0.12 4.33	750 5,300	0.05 0.15 3.14							
	se Creek Upstream																													
Dat	mple ID: te Collected: pth (ft - ft)		LOEC TISSUE RESIDUE	SD-03-0.5 6/1/2006 0 - 0.5		SD-04-0.5 6/1/2006 0 - 0.5		RSD-1 7/17/2007 0-0.5 (0-6")		RSD-2 7/17/2007 0-0.5 (0-6*)		RSD-3 7/17/2007 0-0.5 (0-6")		RSD-4 7/17/2007 0-0.5 (0-6")	1900年															
			EFFECT LEVEL ^b					Rose Creek - Upstream of Facili	ty,	Rose Creek - Upstream of Facilit	у.	Rose Creek - Upstream of		Rose Creek - Upstream of	-															
Loc	cation	Site-Specific Uptake	(mafen wat)	Ditch along	Estimated Tissue Concentration		Estimated Tissue Concentration	east of Kingshighway & south of General				Facility, west of Kingshighway & south of Former	Tissue Concentration	Facility, west of Kingshighway & south of Former	Tissue Concentration															
	Cadn	Factor* nium 0.00393	0.59	Kingshwy	(mg/kg wet) ^e 38 0.0	(upstream)	(mg/kg wet) ^c 0.004	Chemical	(mg/kg wet) ^c 4.9 0.000	Chemical 9	(mg/kg wet) ⁶ .9 0.01	Swift Aa Chem	(mg/kg wet) ^c 0.003	Swift Ag Chem 9.9	(mg/kg wet) ^c 0.01															
	se Creek Outfall Inv	ead 0.00121 Zinc 0.00355 vestigative Sample	11.12 es		900 2.3	1,10	0.065	5 7	10 0.42	2 130	00 0.16	820	0.49	1600	0.13	Land Inc.														
Dat	mple ID: te Collected: pth (ft - ft)		RESIDUE EFFECT	SD-14-0.5 6/12/2006 0 - 0.5	Estimated Tissue	SD-15-0.5 6/12/2006	Estimated Tissue	SD-16-0.5 6/12/2006	Estimated Tissue	SD-17-0.5 6/12/2006	Estimated	SD-18-0.5 6/12/2006	Estimated Tissue	TRC-2-S-0-6 7/18/2007 0 - 0.5 (0-6")	Estimated Tissue	TRC-2-S-8-10 7/18/2007	Estimated Tissue	TRC-2-S-12-14 7/18/2007 1.0 - 1.16 (12-14")	Estimated Tissue 0	7/19/2007 0 - 0.5 (0-6")	Estimated Tissue									
Loc	cation	Site-Specific Uptake Factor*	LEVEL ^b (mg/kg wet)	Rose Creek Outfa	Concentration	0 - 0.5 Rose Creek Outfal	Concentration	0 - 0.5 Rose Creek Outfal	Concentration	0 - 0.5 Rose Creek Outfall	Tissue Concentration (mg/kg wet) ^c	0 - 0.5 Rose Creek Outfall	Concentration (mg/kg wet) ^c	Old Cahokia Watershed [6]	Concentration (mg/kg wet) ^c	0.66 - 0.83 (8-10") Old Cahokia Watershed [6]					Concentration (mg/kg wet) ^e									
E	Cadm	ead 0.00393 i.ead 0.00121 Zinc 0.00355	0.59 5.22		12 0.0 430 0.0	1 7	.4 0.005 30 0.05		1.1 0.001 33 0.01	1 1	15 0.01 30 0.03	26 210	0.02 0.04 0.48	1,300 1,600	0.85	2,100 2,100	1.38 0.42	140 5,500	0.09	290 1,200	0.19 0.24									
	st Ditch Outfall Inv	estigative Sample	LOEC TISSUE	SD-29-0.5	100 0.6	5] 74 SD-30-0.5	10 0.44	SD-31-0.5	40 0.08	SD-32-0.5	1.01	SD-33-0.5	0.48	15,000 SD-38	8.89	20,000 SD-39	11.86	6,600 SD-40	3.91	8,600	5.10									
	te Collected: pth (ft - ft)	Site-Specific	RESIDUE	6/1/2006 0 - 0.5	Estimated Tissue Concentration	6/1/2006 0 - 0.5	Estimated Tissue	6/1/2006 0 - 0.5	Estimated Tissue	6/1/2006 0 - 0,5	Estimated Tissue	6/1/2006 0 - 0.5	Estimated Tissue	12/12/2006 0 - 0.5 Cahokia		12/12/2006 0 - 0.5 Cahokia	Estimated Tissue Concentration	12/12/2006 0 - 0.5 Cahokia	Estimated Tissue Concentration											
Loc	cation	Uptake Factor* ium 0.00393	(mg/kg wet)	West Ditch 1 Outfa		West Ditch 1 Outfai	Concentration (mg/kg wet) ^c	West Ditch 1 Outfa	Concentration ill (mg/kg wet) ^c 32 0.02	West Ditch 1 Outfal	Concentration (mg/kg wet)*	West Ditch 1 Outfall	(mg/kg wet) ^c	Watershed [4]	0.09	Watershed [4]	(mg/kg wet) ⁶	Watershed [4]	(mg/kg wet) ^c											
West	st Ditch Outfall Inve	ead 0.00121 Zinc 0.00355	5.22 11.12	3 4,0	880 0.06 100 2.37	8 51 7 3,80	0 0.10 0 2.25	7,9	52 0.01 00 4.68	87 6,40	0 0.18 0 3.79	46 590	0.01 0.35	340 14,000	0.07 8.30	240 3,500	0.05 2.07	190 8,900	0.04 5.28											
Date	e Collected:	estigative sample:	LOEC TISSUE RESIDUE	SD-45 12/12/2006	54075	SD-46 12/13/2006	No. of the last	SD-47 12/13/2006		SD-48 12/13/2006	Estimated	TWD-02-C-0-6 7/17/2007	Estimated	TWD-02-C-6-9 7/17/2007	Estimated	TWD-02-C-6-9 DUP 7/17/2007	Estimated	TWD-02-S-0-6 7/17/2007	Estimated	TWD-02-S-6-8 7/17/2007	Estimated									
Dep	oth (ft - ft)	Site-Specific Uptake	LEVEL ^b	0 - 0.5 Cahokia Wetland ¹	Estimated Tissue Concentration	0 - 0.5 Cahokia Wetland ^{[2}	Estimated Tissue Concentration	0 - 0.5 Cahokia Wetland ^B	Estimated Tissue Concentration	0 - 0.5 Cahokia Wetland ^{[2}	Tissue Concentration		Tissue Concentration	0.5 - 0.75 (6-9") Old Cahokia	Tissue Concentration		Tissue Concentration		Tissue 0 Concentration		Tissue Concentration									
	L	Factor* um 0.00393 ead 0.00121	5.22	2	56 0.04 20 0.04	1 15 4 59	(mg/kg wet) ^c 0 0.10 0 0.12	Canonia wetland	(mg/kg wet) ^c 90 0.06 20 0.08	8 8 67	(mg/kg wet) ^c 9 0.06 0 0.14	Watershed [5] 71 210	(mg/kg wet) ^c 0.05 0.04	Watershed [5] 17 160	(mg/kg wet) ^c 0.01 0.03	Watershed Pl 12 120	(mg/kg wet) ^c 0.01 0.02	Watershed [9] 140 260	0.09 0.05	Watershed 34 210	(mg/kg wet)* 0.02 0.04									
Wes	st Ditch Outfall Refe	inc 0.00355	11.12	16,0	00 9.49	23,00	0 13.64	25,00	00 14.82	26,00	0 15.41	12,000	7.11	1,900	1.13	1,900	1.13	16,000	9.49	3,700	2.19									
	STORY STORY	or erice dumpres	LOEC TISSUE	CAMA.		7 3 3 3 3	17 (12) (2)	7 12 3.1	164 SE48		98,500	18381	Elle Sil				103 P	and the	1500	-	1						THEFT			
Date	sple ID: e Collected: th (ft - ft)	ST. S	RESIDUE EFFECT LEVEL ^b	TWD-1-N-0-6 7/17/2007 0 - 0.5 (0-6")	Estimated Tissue	TWD-1-N-6-8 7/17/2007	Estimated Tissue	TWD-1-C-0-6 7/17/2007	Followed Warm	TWD-1-C-6-10 7/17/2007	Estimated	TWD-1-S-0-6 7/17/2007	Estimated Tissue	TWD-1-S-6-9.5 7/17/2007 0.5 - 0.75 (6-9.5")	Estimated	TWD-02-N-0-6 7/17/2007 0 - 0.5 (0-6")	Estimated Tissue	TWD-02-N-6-7 7/17/2007 0.5 - 0.6 (6-7")	Estimated Tissue	TWD-03-N-0-6 7/17/2007 0 - 0.5 (0-6")	Estimated Tissue 0.	TWD-03-N-6-8 7/17/2007 .5 - 0.66 (6-8")	Estimated Tissue	TWD-03-0 7/17/ 0 - 0.5 (0-6")	007 Estimated	TWD-03-C-6-8.5 7/17/2007 0.5 - 0.66 (6-8.5")	Estimated Tissue	TWD-03-S-0-6 7/17/2007 0 - 0.5 (0-6") Estim	7/1	D-03-S-6-8 717/2007 Estimated - 0.6 (6-8") Tissue
	ation	Site-Specific Uptake Factor*	(mg/kg wet)	Old Cahokia Watershed [5]	Concentration (mg/kg wet) ⁶	Old Cahokia Watershed [5]	Concentration (mg/kg wet) ^c	0 - 0.5 (0-6") Old Cahokia Watershed [5]	Concentration (mg/kg wet) ^c	0.5 - 0.8 (6-10") Old Cahokia Watershed [5]	Concentration (mg/kg wet) ^e	0 - 0.5 (0-6*) Old Cahokia Watershed [5]	Concentration (mg/kg wet) ^c	Old Cahokia Watershed [5]	Tissue Concentration (mg/kg wet) ⁶		Concentration (mg/kg wet) ^c		Concentration (mg/kg wet) ^c		Concentration (mg/kg wet) ^c	Old Cahokia Watershed [5]	Concentration (mg/kg wet) ^c	Old Cahokia Waters	hed Concentration		Concentration	Old Cahokia Con	centration Old	tershed [5] (mg/kg wet
F	Cadmi	um 0.00393 sad 0.00121	0.59 5.22	14	55 0.04 40 0.03	4.	1 0.003 2 0.01	4	44 0.03 78 0.02	3	6 0.01 3 0.01	90 390	0.06	15 78	0.01 0.02	32 140	0.02 0.03	130	0.03	28 130	0.02	18 52	0.01 0.01		25 0.02 180 0.04 700 1.60	21 140	0.01 0.03 0.77	23 150 2.400	0.02 0.03	20 0. 59 0. 1,300 0.
_		JIC 0.00335	11.12	2,01	1.19	35	0 0.21	2,90	1.72	1,80	0 1.07	4,600	2.73	1,800	1.07	1600	1.07	1800	1.07	1,900	1,13	1,200	0.71		1,00					
Rose	e Creek Outfall Ref	erence Samples		10,100				and some	-111111111111	30000		Maria and																		
Sam	ple ID: Collected:	144.73	LOEC TISSUE	SD-50-0-6 7/19/2007		SD-50-8-10 7/19/2007	7.51	SD-51-DITCH-0-6 7/19/2007		SD-51-DITCH-8-10 7/19/2007		SD-51-DITCH-12-14 7/19/2007		TRC-3-S-0-6 7/19/2007		TRC-3-S-7-9 7/18/2007														
	th (ft - ft)	1-18	RESIDUE	0 - 0.5 (0-6")		0.66 - 0.83 (8-10")		0 - 0.5 (0-6") Old Cahokia		0.66 ~ 0.83 (8-10") Old Cahokia		1.0 - 1.16 (12-14") Old Cahokia	0) - 0.5 (0-6°)		0.58-0.75 (7-9")	- 5													
Loca	ition	1	LEVEL ^b (mg/kg wet)	Old Cahokia Creek		Old Cahokia Creek	118-29	Watershed - upgradient of Rose		Watershed - upgradient of Rose	Estimated	Watershed - upgradient of Rose Creek	Estimated	Old Cahokia	Estimated	Old Cahokia	Estimated													
		Site-Specific Uptake	P. C.	Old Gallonia Green	Estimated Tissue Concentration	Old Callokia Creek	Estimated Tissue Concentration	Creek discharge area, adj to Milam Landfill	Concentration	Creek discharge area, adj to Milam Landfill	Tissue	discharge area, adj to Milam	Tissue Concentration	Watershed [6]	Tissue Concentration	Watershed [4]	Tissue Concentration													
	Cadmiu	Factor* am 0.00393 ad 0.00121	0.59	2 5	(mg/kg wet) ⁴ 22 0.01 38 0.01	2:	(mg/kg wet) ^c 2 0.01 2 0.02	10	(mg/kg wet) ^c 00 0.07	33	(mg/kg wet)* 0 0.22 0 0.13	1,600	0.05 0.32	36 79	(mg/kg wet)* 0.02	64	(mg/kg wet) ^c 0.04 0.01													
Impo	Zi oundment Samples	ad 0.00121 nc 0.00355	11.12	78	0.46	1100	0.65	1,90	1.13	310	0 1.84	1,600	0.95	1,100	0.65	1,600	0.95								-					
	ple ID:	5	LOEC TISSUE RESIDUE	RC-1-N-0-6		TRC-1-N-6-8	0.00	TRC-1-S-0-6		TRC-1-S-0-6-D		TRC-1-S-6-8		TRC-2-N-0-6		TRC-2-N1-0-6		FRC-2-N1-6-8		TRC-2-C-0-6		TRC-2-C-10-12		TRC-3-N-0-6	13/3	TRC-3-N-0-6/FD		TRC-3-N-8-10		
Date	Collected: h (ft - ft)	Site-Specific	EFFECT LEVEL ^b 0	7/18/2007 - 0.5 (0-6")	Estimated Tissue	7/18/2007 0.5 - 0.66 (6-8°)	Estimated Tissue	7/19/2007 0 - 0.5 (0-6")	Estimated Tissue	7/19/2007 0 - 0.5 (0-6")		7/19/2007 0.5 - 0.66 (6-8")	Estimated Tissue	7/18/2007	Tissue	7/17/2007	Estimated Tissue 0.	7/18/2007).5 - 0.66 (6-8")		7/18/2007 - 0.5 (0-6")		7/18/2007 .83 - 1.0 (10-12")	Estimated Tissue	7/18/2007 0 - 0.5 (0-6")	Estimated Tissue	7/18/2007 0.5 - 0.66 (6-8")	Estimated Tissue 0	7/19/2007 - 0.5 (0-6") Estim	ated Tissue	
Local	Cadmin	Uptake Factor*	(mg/kg wet)	Old Cahokia Watershed [4]	Concentration (mg/kg wet) ^c	Old Cahokia Watershed [4]	Concentration (mg/kg wet) ^c	Old Cahokia Watershed [4]	Concentration (mg/kg wet) ^c	Old Cahokia Watershed [6]	Concentration (mg/kg wet) ^c	Old Cahokia Watershed [6]	(mg/kg wet) ^c	Old Cahokia Watershed [4]	(mg/kg wet) ^c	Watershed [6]	(mg/kg wet) ^c	Watershed [4]	(mg/kg wet) ^c	Old Cahokia Watershed [6]	(mg/kg wet) ^c	Old Cahokia Watershed [6]	(mg/kg wet) ^c 0.0002	Old Cahokia Waters	(mg/kg wet) ^c 0.48 0.0003	Old Cahokia Watershed [6] 0.1	(mg/kg wet) ^c 0.0001		centration g/kg wet) ^c 0.0001	
	Le Zi	m 0.00393 ad 0.00121 nc 0.00355	5.22 11.12	3	88 0.01 80 0.40	21	0.003	7 74	5 0.02 0 0.44	7.4	4 0.005 2 0.01 0 0.44	7.4 17 700	0.003 0.41	9 38	0.0001 0.0018 0.02	0.125 11 53	0.0001 0.0022 0.03	0.15 12 54	0.0001 0.0024 0.03	33 240	0.0032 0.0067 0.14	16 79	0.0032 0.05		7.1 0.0014 42 0.02		0.0018	4.2	0.0008	
Scho	enberger Creek Sa	mples					2.20		3.44	7	2.77				0.00		2.20													
Samp	ole ID: Collected:		LOEC TISSUE RESIDUE	SD-20-0.5 6/13/2006		SD-20-0.5/FD		SD-21-0.5		SD-52																				
	h (ft - ft)	1626	EFFECT LEVEL ^b	0 - 0.5	7	6/13/2006 0.0 - 0.5		6/12/2006 0 - 0.5		7/19/2007 0 - 0.5 (0-6*)	Estimated																			
Locat	tion	Site-Specific Uptake Factor*	(mg/kg wet)	Sch. Creek	Concentration	Sch Creek	Estimated Tissue Concentration	Sch. Creek		Schoenberger Creek west of Old Cahokia western boundary	Tissue Concentration																			
	Cadmiu	m 0.00393 d 0.00121	0.59	2 170	(mg/kg wet) ⁶ 3 0.02 0 0.03	23 150	(mg/kg wet) ^c 0.02 0.03	2 16	(mg/kg wet)* 7 0.02 0 0.03	30	0.05																			
Notes		0.00355		1,000		930		98		1,800	1.07																			
b See c Tiss	Table 6-3. ue was estimates as	s sediment concent	tration x site-specil	fic uptake factor (dry	r weight basis). Percen	nt moisture was not ava	allable from the laborator	ry.																						
Value:	s were converted to ue (wet weight) = Cti	wet tissue weight a	assuming that bent	thic invertebrate moi	isture content of 83.3 (I	by mass) percent (Piet	z et al., 1984, as cited in	n EPA, 1999).																						